HomeРазноеХарактеристика почв – Подзолистые почвы ℹ️ характеристика, свойства, классификация и описание пород, условия формирования грунтов, особенности строения, природные зоны

Характеристика почв – Подзолистые почвы ℹ️ характеристика, свойства, классификация и описание пород, условия формирования грунтов, особенности строения, природные зоны

Содержание

Почва — Википедия

Почвенный профиль

Почва — природное тело, фор­ми­рую­щее­ся в ре­зуль­та­те пре­об­ра­зо­ва­ния по­верх­но­ст­ных сло­ёв суши Земли при со­вме­ст­ном воз­дей­ст­вии факторов почвообразования.

Почва со­сто­ит из поч­вен­ных го­ри­зон­тов, об­ра­зую­щих поч­вен­ный профиль, ха­рак­те­ри­зу­ет­ся плодородием[1][2]. Многообразие почв отражено в разных типах почв[3]. Почвы изучает особая наука — почвоведение, а также агрономия, геология, грунтоведение, геохимия и другие научные направления. Почвы и подводные илы образуют особую оболочку Земли — педосфера, которая активно взаимодействует с соседними геосферами

До работ В. В. Докучаева почва рассматривалась как геологический и агрономический термин:

  • 1839 — Подлежащая, в виде пласта, горная порода называется постелью или подошвою (lit, sole)
    [4]
    . Почва вулканическая, Почва порфировая, Почва гранитовая.
  • 1863 — в Словаре В. И. Даля — Почва: земля, основание (от почивать, лежать).
  • 1882 — Верхний слой земли[5].

В. В. Докучаев с 1883 года[6] впервые рассматривает почву как самостоятельное природное тело, формирующееся под воздействием факторов почвообразования: «совокупностью причин (грунт, климат, рельеф, возраст и растительность)». Он подытоживает, что почва «есть функция (результат) от материнской породы (грунта), климата и организмов, помноженная на время»[7].

Горизонты в профиле почвы

Термины по ГОСТ 27593-88:

  • Почвенный профиль — совокупность генетически сопряжённых и закономерно сменяющихся почвенных горизонтов, на которые расчленяется почва в процессе почвообразования. Почвенный профиль- вертикальный разрез почвы от поверхности до материнской породы(грунтовой)
    [8]
    .
  • Почвенный горизонт — специфический слой почвенного профиля, образовавшийся в результате воздействия почвообразовательных процессов[8].
  • Почвенный покров — совокупность почв, покрывающих земную поверхность[8].

В процессе почвообразования, прежде всего под действием вертикальных (восходящих и нисходящих) потоков вещества и энергии, а также неоднородности распределения живого вещества исходная порода расслаивается на генетические горизонты. Часто почвы формируются на исходно вертикально неоднородных двучленных породах, что откладывает отпечаток на почвообразование и сочетание горизонтов.

Горизонты рассматриваются как однородные (в масштабе всей почвенной толщи) части почвы, взаимосвязанные и взаимообусловленные, отличающиеся по химическому, минералогическому, гранулометрическому составу, физическим и биологическим свойствам. Комплекс горизонтов, характерный для данного типа почвообразования, образует почвенный профиль.

Для горизонтов принято буквенное обозначение, позволяющее записывать строение профиля. Например, для дерново-подзолистой почвы: A0-A0A1-A1-A1A2-A2-A2B-BC-C[9].

Выделяются следующие типы горизонтов[10]:

  • Органогенные — (подстилка (A0, O), торфяной горизонт (T), перегнойный горизонт (Ah, H), дернина (Ad), гумусовый горизонт (A) и т. д.) — характеризующиеся биогенным накоплением органического вещества.
  • Элювиальные — (подзолистый, лессированный, осолоделый, сегрегированный горизонты; обозначаются буквой E с индексами, либо A2) — характеризующиеся выносом органических и/или минеральных компонентов.
  • Иллювиальные — (B с индексами) — характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
  • Метаморфические — (Bm) — образуются при трансформации минеральной части почвы на месте.
  • Гидрогенно-аккумулятивные — (S) — образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
  • Коровые — (K) — горизонты, сцементированные различными веществами (легкорастворимые соли, гипс, карбонаты, аморфный кремнезём, оксиды железа и др.).
  • Глеевые — (G) — с преобладающими восстановительными условиями.
  • Подпочвенные — материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.

Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3—5 м²/г у песчаных до 300—400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40—60 %.

Плотность твёрдой фазы (ρs) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35—1,45 г/см³. Плотность почвы (ρb) ниже: 0,8—1,8 г/см³ и 0,1—0,3 г/см³ соответственно. Пористость (порозность, ε) связана с плотностями по формуле:

ε = 1 — ρbs

Минеральная часть почвы[править | править код]

Шлиф почвенного агрегата под микроскопом
Минералогический состав

Около 50—60 % объёма и до 90—97 % массы почвы составляют минеральные компоненты. Минералогический состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.

Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.

Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.

Высокое содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.

Гранулометрический состав
Треугольник Ферре

В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.

Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.

В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (

silt, 0,002—0,05 мм) частиц, по второй — глинистых (clay, <0,002 мм), по третьей — песчаных (sand, 0,05—2 мм) и находится место пересечения отрезков. Внутри треугольник разбит на участки, каждый из которых соответствует тому или иному гранулометрическому составу почвы. Тип почвообразования при этом не учитывается.

Органическая часть почвы[править | править код]

В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.

В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воск, смолы и т. д.), составляющие до 10—15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.

Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.

Элементный состав гуминовых кислот (по массе): 46—62 % C, 3—6 % N, 3—5 % H, 32—38 % O. Состав фульвокислот: 36—44 % C, 3—4,5 % N, 3—5 % H, 45—50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20—80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4—15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.

В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества

[11]. Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.

О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.

Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе[12] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой[13] гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.

Почвенная структура[править | править код]

Термины по ГОСТу:

Структура почвы[8] — физическое строение твёрдой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.

Твёрдая часть почвы[8] — совокупность всех видов частиц, находящихся в почве в твёрдом состоянии при естественном уровне влажности.

Поровое пространство в почве[8] — разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.

Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов (наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образование водородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении через кишечник почвенных животных.

Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7—10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.

Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют[14] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.

Новообразования и включения[править | править код]

Новообразования — скопления веществ, образующиеся в почве в процессе её формирования.

Широко распространены новообразования железа и марганца, чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями. Они представлены конкрециями, трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распространены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса, также характерные для аридных областей, представлены налётами, друзами, гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны — натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.

К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.

Жидкая фаза почв, называемая иначе Почвенный раствор, является водным раствором различных минеральных и органических веществ, в котором взвешены разнообразные коллоидные частицы. Состав почвенных растворов очень сильно варьируется в зависимости от типа почв, погоды и других факторов.

Почвенный раствор является средой, из которой получают минеральное питание растения, а также средой обитания многочисленных почвенных микроорганизмов.

Состояния воды в почве[править | править код]

В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести, а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.

Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путём нагревания, а некоторые формы (конституционную воду) — прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.

Физически связанную воду почва удерживает силами поверхностного натяжения. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у предколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определённое влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.

Первые слои молекул воды, то есть гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела. Рыхло связанную воду почва удерживает с меньшей силой, её свойства не так резко отличны от свободной воды. Тем не менее сила притяжения ещё настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.

Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.

При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.

Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.

В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.

Взаимодействие с твёрдой фазой[править | править код]

Почвенный поглощающий комплекс

Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений, наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.

Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) — общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии — а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.

Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве — с большей атомной массой, хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия, чем протонов водорода, а каолинит — наоборот.

Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.

Почвенная кислотность

Почвенный воздух состоит из смеси различных газов:

  1. кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;
  2. углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;
  3. метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;
  4. водород;
  5. сероводород;
  6. азот; более вероятно образование азота в виде более сложных соединений (например, мочевины).

И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.

Почва — это среда обитания множества организмов. Существа, обитающие в почве, называются педобионтами. Наименьшими из них являются бактерии, водоросли, грибки и одноклеточные организмы, обитающие в почвенных водах. В одном м³ может обитать до 10¹⁴ организмов. В почвенном воздухе обитают беспозвоночные животные, такие как клещи, пауки, жуки, ногохвостки и дождевые черви. Они питаются остатками растений, грибницей и другими организмами. В почве обитают и позвоночные животные, одно из них — крот. Он очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому у него очень хороший слух и он практически слепой.

Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда.

  • Для мелких почвенных животных, которых объединяют под названием нанофауна (простейшие, коловратки, тихоходки, нематоды и др.), почва — это система микроводоемов.
  • Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием микрофауна. Размеры представителей микрофауны почв — от десятых долей до 2-3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей, первичнобескрылые насекомые (коллемболы, протуры, двухвостки), мелкие виды крылатых насекомых, многоножки симфилы и др. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет дышать через покровы. Многие виды не имеют трахейной системы. Такие животные очень чувствительны к высыханию.
  • Более крупных почвенных животных, с размерами тела от 2 до 20 мм, называют представителями мезофауны. Это личинки насекомых, многоножки, энхитреиды, дождевые черви и др. Для них почва — плотная среда, оказывающая значительное механическое сопротивление при движении. Эти относительно крупные формы передвигаются в почве либо расширяя естественные скважины путём раздвигания почвенных частиц, либо роя новые ходы.
  • Мегафауна или макрофауна почв — это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, слепушонки, цокоры, кроты Евразии, златокроты Африки, сумчатые кроты Австралии и др.). Они прокладывают в почве целые системы ходов и нор. Внешний облик и анатомические особенности этих животных отражают их приспособленность к роющему подземному образу жизни.
  • Кроме постоянных обитателей почвы, среди крупных животных можно выделить большую экологическую группу обитателей нор (суслики, сурки, тушканчики, кролики, барсуки и т. п.). Они кормятся на поверхности, но размножаются, зимуют, отдыхают, спасаются от опасности в почве. Целый ряд других животных использует их норы, находя в них благоприятный микроклимат и укрытие от врагов. Норники обладают чертами строения, характерными для наземных животных, но имеют ряд приспособлений, связанных с роющим образом жизни.

В природе практически не бывает таких ситуаций, чтобы на много километров простиралась какая-нибудь одна почва с неизменными в пространстве свойствами. При этом различия почв обусловлены различиями в факторах почвообразования.

Закономерное пространственное размещение почв на небольших территориях называется структурой почвенного покрова (СПП). Исходной единицей СПП является элементарный почвенный ареал (ЭПА) — почвенное образование, внутри которого отсутствуют какие-либо почвенно-географические границы. Чередующиеся в пространстве и в той или иной степени генетически связанные ЭПА образуют почвенные комбинации.

Пять факторов почвообразования установленные В. В. Докучаевым.

Почвообразующие факторы[8]:

  • Элементы природной среды: почвообразующие породы, климат, живые и отмершие организмы, возраст и рельеф местности,
  • а также антропогенная деятельность, оказывающие существенное влияние на почвообразование.

Первичное почвообразование[править | править код]

В российском почвоведении приведена концепция[15], что любая субстратная система, обеспечивающая рост и развитие растений «от семени до семени», есть почва. Идея эта дискуссионная, поскольку отрицает докучаевский принцип историчности, подразумевающий определённую зрелость почв и разделение профиля на генетические горизонты, но полезна в познании общей концепции развития почв.

Зачаточное состояние профиля почв до появления первых признаков горизонтов можно определять термином «инициальные почвы»[16]. Соответственно выделяется «инициальная стадия почвообразования» — от почвы «по Вески» до того времени, когда появится заметная дифференциация профиля на горизонты, и можно будет прогнозировать классификационный статус почвы. За термином «молодые почвы» предложено закрепить стадию «молодого почвообразования» — от появления первых признаков горизонтов до того времени, когда генетический (точнее, морфолого-аналитический) облик будет достаточно выраженным для диагностики и классификации с общих позиций почвоведения.

Генетические характеристики можно давать и до достижения зрелости профиля, с понятной долей прогностического риска, например, — «инициальные дерновые почвы»; «молодые проподзолистые почвы», «молодые карбонатные почвы». При таком подходе номенклатурные трудности разрешаются естественно, на базе общих принципов почвенно-экологического прогнозирования в соответствии с формулой Докучаева-Йенни[en] (представление почвы как функции факторов почвообразования: S = f(cl, o, r, p, t …)).

Антропогенное почвообразование[править | править код]

В научной литературе для земель после горных работ и других нарушений почвенного покрова закрепилось обобщённое название «техногенные ландшафты», а изучение почвообразования в этих ландшафтах оформилось в «рекультивационное почвоведение»[17]. Был предложен также термин «технозёмы»[18], по сути представляющий попытку объединить Докучаевскую традицию «-зёмов» с техногенными ландшафтами.

Отмечается, что логичнее применять термин «технозём» к тем почвам, которые специально создаются в процессе технологии горных работ путём разравнивания поверхности и насыпания специально снятых гумусовых горизонтов или потенциально плодородных грунтов (лёсса). Использование этого термина для генетического почвоведения вряд ли оправданно, так как итоговым, климаксным продуктом почвообразования будет не новый «-зём», а зональная почва, например, дерново-подзолистая, или дерново-глеевая.

Для техногенно-нарушенных почв предлагалось использовать термины «инициальные почвы» (от «нуль — момента» до появления горизонтов) и «молодые почвы» (от появления до оформления диагностических признаков зрелых почв), указывающие на главную особенность таких почвенных образований — временные этапы их эволюции из недифференцированных пород в зональные почвы.

Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.

В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года.

Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.

В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии — группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название — описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.

Термины по ГОСТ 27593-88(2005)[19]:

Классификация почв — система разделения почв по происхождению и (или) свойствам.

  • Тип почвы — основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.
    • Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
      • Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
        • Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
          • Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
            • Разряд почвы — классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.

Бывают такие профили: чернозем, подзолистая, тундровая почвы

Климат как фактор географического распространения почв[править | править код]

Климат — один из важнейших факторов почвообразования и географического распространения почв — в значительной степени определяется космическими причинами (количеством энергии, получаемой земной поверхностью от Солнца). С климатом связано проявление самых общих законов географии почв. Он влияет на почвообразование как непосредственно, определяя энергетический уровень и гидротермический режим почв, так и косвенно, воздействуя на другие факторы почвообразования (растительность, жизнедеятельность организмов, почвообразующие породы и т. д.).

Непосредственное влияние климата на географию почв проявляется в разных типах гидротермических условий почвообразования. Тепловой и водный режимы почв оказывают влияние на характер и интенсивность всех физических, химических и биологических процессов, протекающих в почве. Ими регулируются процессы физического выветривания горных пород, интенсивность химических реакций, концентрация почвенного раствора, соотношение твёрдой и жидкой фазы, растворимость газов. Гидротермические условия влияют на интенсивность биохимической деятельности бактерий, скорость разложения органических остатков, жизнедеятельность организмов и другие факторы, поэтому в разных районах страны с неодинаковым

Основные характеристики почв

Цвет, механический состав, структура, новообразования — основные характеристики почвенных горизонтов.

Почва бывает разного цвета из-за того, что в ней как бы смешиваются цвета ее главных компонентов. От темно-серого и темно-коричневого до черного — таков основной цвет у органического вещества почв. Бурый и красный цвета имеют окислы трехвалентного железа. Сизые, голубоватые и зеленоватые тона характерны для минералов, содержащих закисные формы двухвалентного железа. Белую окраску почве придают зерна кварца и некоторых других минералов, а также известь, гипс и легкорастворимые соли — карбонаты, хлориды и сульфаты натрия и калия.

Механический состав почвы — это содержание в ней песчаных и глинистых частиц разного размера. Если много крупных песчаных частиц, то почва — песчаная, а если много мелких глинистых — глинистая. Есть еще супесчаные почвы, в которых крупных частиц меньше, чем в песках. В суглинистых почвах уже больше мелких частиц, и почвы ближе к глинистым. Песчаные и глинистые частички скрепляются между собой в комочки, зернышки или орешки, образуя соответственно комковатую, зернистую и ореховатую структуру почв. «Склеивают» их органическое вещество и особые физико-химические силы, возникающие на поверхности тонких частиц. Наконец, новообразования — это особые выделения в почвенном веществе, образующиеся в результате выпадения из растворов различных солей и соединений. Так, проникающий по ходу корня почвенный раствор потом испаряется, и из него выпадает известь — вокруг корня, как его чехол, образуется известковая тонкая трубочка. Почвенные новообразования сродни камням в почках у больного человека.

Почвенные горизонты отличаются также и по содержанию влаги, составу почвенного раствора, почвенного воздуха и живых организмов. Для полноценного произрастания растений необходимо равномерное соотношение твердого вещества почв, почвенных пор (мелких пустот между твердыми частицами), заполненных водой, и пор, заполненных воздухом. Такое равномерное соотношение можно наблюдать в огородных почвах или в верхних горизонтах черноземов после летнего дождя. Способность запасать в своих тонких порах воду за счет поверхностного натяжения и капиллярного поднятия — очень важное свойство почвы. Даже во время засухи почва снабжает такой капиллярной влагой корни растений. Почвенный раствор — это «кровь» почвы. Он переносит вещества с одного места на другое, создавая горизонты вымывания и вмывания веществ. Однако по тонким порам — капиллярам — из грунтовых вод на поверхность почв вместе с раствором попадают и вредные для растений легкорастворимые соли. Если почва длительное время наполнена водой и в ней мало пустот с воздухом, то она переувлажняется, что плохо для растений. Дело в том, что в этом случае состав почвенного воздуха сильно отличается от воздуха атмосферы Земли (в котором 21% кислорода и 0,03% углекислого газа) и приближается к атмосфере Венеры (в нем может быть 1 — 2% кислорода и 5 — 10% углекислого газа). В таких условиях замедляется развитие корней и растений в целом. В результате разложения органического вещества появляется легкий болотный газ метан (СН4). Именно его выделения сопровождаются звуками, которые наводили ужас на героев повести А. Конан Дойла «Собака Баскервилей». В порах обычной, не переувлажненной почвы содержится 20% кислорода и 0,2 — 0,5% углекислого газа. Их содержание регулируют мириады почвенных организмов, потребляющие кислород и выделяющие углекислый газ. Только микроорганизмов в верхних горизонтах почв — сотни миллионов и миллиарды в I г. Среди них много бактерий, микроскопических грибов и водорослей. Много в почве и мелких беспозвоночных — дождевых червей, личинок и взрослых членистоногих, а также других животных — круглых червей и тихоходок. Помимо микроорганизмов на 1 м2 почвы обитают тысячи более крупных и миллионы мелких, не видимых невооруженным глазом почвенных животных. Общая масса почвенных организмов в сотни раз превосходит массу живущих на почве земноводных, пресмыкающихся, млекопитающих и птиц.

Почвенные организмы — для каждой почвы свои. Например, в лесных почвах очень много микроскопических грибов, а в степных черноземах их мало и преобладают бактерии, поэтому попадающие на поверхность растительные остатки в лесу и степи разлагаются по-разному, из-за чего и формируются разные почвенные горизонты. Почва — это настоящая пленка жизни. Под покровом леса образуется подстилка — опал листвы, хвои, веточек, трав и мхов, отчасти переработанный почвенными организмами. Если такой опад оказывается в условиях переувлажненной почвы, где намного меньше почвенных животных, перерабатывающих остатки растений, то здесь образуется горизонт торфа. В степи, где нет деревьев, остатки трав формируют горизонт степного войлока. Все эти горизонты состоят из органического вещества и почти не содержат минеральных частиц.

Часть органических остатков в результате отмирания корней попадает прямо внутрь почвы, а часть органического вещества затаскивается туда червями и другими животными. Здесь происходит взаимодействие органических веществ с минеральными, образуются органоминеральные соединения. Такие химические соединения и органические остатки внутри почвы называются гумусом, а почвенный горизонт темного цвета с его высоким содержанием — 1умусовым горизонтом. Это главный горизонт черноземов, мощность которого более 1 м. Обилие организмов «склеивает» почвенные частицы в прочные зернышки, поэтому у этих горизонтов формируется зернистая структура, которая обеспечивает корням прекрасный доступ воздуха. Если же условия для формирования почв не такие идеальные, как для черноземов, то под подстилкой могут формироваться горизонты вымывания, т. е. слои почв, из которых выносятся, вымываются минеральные соединения. При этом остаются только самые устойчивые минералы типа кварца, благодаря чему горизонты приобретают белесую окраску. Горизонты вымывания характерны для широко распространенных в лесах России подзолов и подзолистых почв. Но если что-то вымывается, то куда это уходит? Часть минеральных соединений уносится грунтовыми водами за пределы почв и, в конце концов, попадают в реки и моря, но часть менее растворимых веществ остается в более глубоких слоях почвы. Так образуются горизонты вмывания. В зависимости от того, какое вещество в них накапливается — соединения железа, гумус или различные соли, горизонты бывают бурыми, черными или белыми. Бурые горизонты вмывания встречаются в подзолистых почвах, а светлые горизонты вмывания извести — в черноземах. Если почва переувлажнена, то в ней недостает кислорода, поэтому часть железа переходит в двухвалентное состояние, а почвенные горизонты в связи с этим приобретают сизые, голубоватые и зеленоватые тона, и, кроме того, они бесструктурны и липки. Такие горизонты называются глеевыми. Они чаще всего встречаются под болотными торфяными почвами. Вот из таких горизонтов: подстилки, торфа, гумусового, глеевого, вымывания и вмывания — состоит большинство почв мира.

Под водой и в пещерах нет почв в их классическом понимании. Под водой в донных осадках практически отсутствует воздух, а органическое вещество там накапливается не столько за счет местных подводных растений, сколько в результате «дождя трупов» морских организмов, питающихся в воде. Подводные илы — это не источник питания для организмов (они живут за счет веществ, растворившихся в воде), а, скорее, их кладбище. Там живут только донные организмы, составляющие небольшой процент от общего числа обитателей подводного мира. Донные осадки — это прекрасный пример биокосного тела, по В. И. Вернадскому, но не почва.

Характеристика основных типов почв России.

Почва — поверхностный слой Земли, обладающий плодородием.

Это рыхлый поверхностный слой суши, образование которого происходило в течение длительного времени в процессе взаимодействия материнской породы, растений, животных, микроорганизмов, климата и рельефа.

Впервые отличил почвенный слой от остальных частей земной коры как «особое естественно–историческое тело» русский учёный В.В.Докучаев, именно он установил, что основные типы почв на земном шаре размещены зонально. Типы почв выделяются на основе их плодородия, механического состава и строения и др.

Основные типы почв России

Тундрово-глеевые — маломощные, содержат мало гумуса, переувлажнены, содержат мало кислорода. Распространены на севере.

Подзолистые и дерново-подзолистые почвы, бедны гумусом и минеральными элементами, поскольку обильные осадки выносят питательные вещества из верхнего слоя, и он приобретает цвет золы (отсюда и название почв). Занимают больше половины территории страны. Подзолистые формируются под хвойными лесами, дерново-подзолистые под смешанными.

Серые лесные почвы формируются под лиственными лесами и достаточно плодородны. Большой растительный спад и менее интенсивное промывание в этой природной зоне способствует накоплению гумуса.

Чернозёмы — самые плодородные почвы. Из остатков растительности накапливается много перегноя, мощность гумусового горизонта достигает 60 — 100 см. Чернозёмом занято менее 10% территории страны. Распространён в зоне лесостепей и степей.

В более сухом климате образуются каштановые почвы. Содержание гумуса в них меньше, так как разреженным становится растительный покров.

В пустынных областях со скудной растительностью формируются бурые почвы полупустынь — серозёмы. Эти почвы часто засолены и содержат мало гумуса.

Почвенные ресурсы это настоящее богатство страны. Почва относится к легко разрушаемым и практически невосполнимым видам природных ресурсов. Естественные враги почвы — это ветровая и водная эрозия. Сильнейшим образом страдает почва и в результате неумелой хозяйственной деятельности человека.

Земельные ресурсы — это поверхность Земли, на которой могут быть размещены различные объекты хозяйства, города и деревни.

Данный вид ресурсов необходимо рассматривать при оценке территории с точки зрения возможностей развития сельского и лесного хозяйства.

Россия относится к числу стран, наиболее обеспеченных земельными ресурсами, но при этом она имеет небольшое количество земли, благоприятной для хозяйственной деятельности человека. Огромные площади России заняты тундрой, тайгой, горными массивами и болотами.

Только 13% земельных площадей страны используются под сады, сенокосы, пастбища и пашни. Большая часть сельскохозяйственных угодий находится на юге страны. Под пашню используются самые плодородные почвы — черноземы, серые лесные и темно-каштановые. Соответственно главная земледельческая зона страны расположена в зоне смешанных лесов, лесостепей и степей. Подзолистые и каштановые почвы используются под пастбища и сенокосы.

В результате хозяйственной деятельности людей — строительства дорог, промышленных предприятий, происходит постоянное уменьшение пахотных угодий. На современном этапе главной задачей является рациональное использование пахотных угодий и повышение их производительности.

Совокупность организационных, хозяйственных и технических мероприятий, направленных на коренное улучшение почв, повышение их продуктивности, называется мелиорацией. Основными видами сельскохозяйственной мелиорации являются: борьба с эрозией, орошение, осушение, химическая мелиорация.

Естественные враги почвы — это ветровая и водная эрозия, которая происходит под действием дождевых и талых вод, ветра. Сильнейшим образом страдает почва и в результате неумелой хозяйственной деятельности человека. Неправильная распашка земли и неумеренный выпас скота также способствуют развитию эрозии почв.

Для борьбы с водной эрозией используют пахоту и посев поперёк склона, глубокую вспашку, создание лесозащитных полос, укрепление склонов оврагов и балок. Против ветровой эрозии — безотвальная обработка почвы. Так же применяется осушение заболоченных и орошение засушливых земель, борьба с засолением, внесение удобрений, научно обоснованный севооборот.

Мероприятия по мелиорации и рекультивации земель составляют меры по охране почвенных ресурсов.

Почва — это… Что такое Почва?

По́чва — поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную гетерогенную открытую четырёхфазную (твёрдая, жидкая, газообразная фазы и живые организмы) структурную систему, образовавшуюся в результате выветривания горных пород и жизнедеятельности организмов.[1] Её рассматривают как особую природную мембрану (биогеомембрану), регулирующую взаимодействие между биосферой, гидросферой и атмосферой Земли. Почвы являются функцией от климата, рельефа, исходной почвообразующей породы, микроорганизмов, растений и животных (то есть биоты в целом), человеческой деятельности и изменяются со временем.

Почва (определение по ГОСТ 27593-88) — самостоятельное естественноисторическое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твёрдых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия.[2]

Почвоведение — наука, занимающаяся изучением почвы.

Морфология

Профиль

Термины по ГОСТ 27593-88:
Почвенный профиль[2] — совокупность генетически сопряжённых и закономерно сменяющихся почвенных горизонтов, на которые расчленяется почва в процессе почвообразования.
Почвенный горизонт[2] — специфический слой почвенного профиля, образовавшийся в результате воздействия почвообразовательных процессов.
Почвенный покров[2] — совокупность почв, покрывающих земную поверхность.

В процессе почвообразования, прежде всего под действием вертикальных (восходящих и нисходящих) потоков вещества и энергии, а также неоднородности распределения живого вещества исходная порода расслаивается на генетические горизонты. Часто почвы формируются на исходно вертикально неоднородных двучленных породах, что откладывает отпечаток на почвообразование и сочетание горизонтов.

Горизонты рассматриваются как однородные (в масштабе всей почвенной толщи) части почвы, взаимосвязанные и взаимообусловленные, отличающиеся по химическому, минералогическому, гранулометрическому составу, физическим и биологическим свойствам. Комплекс горизонтов, характерный для данного типа почвообразования, образует почвенный профиль.

Для горизонтов принято буквенное обозначение, позволяющее записывать строение профиля. Например, для дерново-подзолистой почвы: A0-A0A1-A1-A1A2-A2-A2B-BC-C[3].

Выделяются следующие типы горизонтов[4]:

  • Органогенные — (подстилка (A0, O), торфяной горизонт (T), перегнойный горизонт (Ah, H), дернина (Ad), гумусовый горизонт (A) и т. д.) — характеризующиеся биогенным накоплением органического вещества.
  • Элювиальные — (подзолистый, лессированный, осолоделый, сегрегированный горизонты; обозначаются буквой E с индексами, либо A2) — характеризующиеся выносом органических и/или минеральных компонентов.
  • Иллювиальные — (B с индексами) — характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
  • Метаморфические — (Bm) — образуются при трансформации минеральной части почвы на месте.
  • Гидрогенно-аккумулятивные — (S) — образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
  • Коровые — (K) — горизонты, сцементированные различными веществами (легкорастворимые соли, гипс, карбонаты, аморфный кремнезём, оксиды железа и др.).
  • Глеевые — (G) — с преобладающими восстановительными условиями.
  • Подпочвенные — материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.

Твёрдая фаза почв

Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3—5 м²/г у песчаных до 300—400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40—60 %.

Плотность твёрдой фазы (ρs) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35—1,45 г/см³. Плотность почвы (ρb) ниже: 0,8—1,8 г/см³ и 0,1—0,3 г/см³ соответственно. Пористость (порозность, ε) связана с плотностями по формуле:

ε = 1 — ρbs

Минеральная часть почвы

Шлиф почвенного агрегата под микроскопом
Минеральный состав

Около 50—60 % объёма и до 90—97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.

Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10—15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.

Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов — каолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.

Высоко содержание минералов-оксидов и гидроксидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.

Гранулометрический состав
Треугольник Ферре

В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.

Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.

В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt, 0,002—0,05 мм) частиц, по второй — глинистых (clay, <0,002 мм), по третьей — песчаных (sand, 0,05—2 мм) и находится место пересечения отрезков. Внутри треугольник разбит на участки, каждый из которых соответствует тому или иному гранулометрическому составу почвы. Тип почвообразования при этом не учитывается.

Органическая часть почвы

В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.

В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воск, смолы и т. д.), составляющие до 10—15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.

Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.

Элементный состав гуминовых кислот (по массе): 46—62 % C, 3—6 % N, 3—5 % H, 32—38 % O. Состав фульвокислот: 36—44 % C, 3—4,5 % N, 3—5 % H, 45—50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20—80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4—15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.

В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества[5]. Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.

О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.

Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе[6] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой[7] гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.

Почвенная структура

Термины по ГОСТу:

Структура почвы[2] — физическое строение твёрдой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.

Твёрдая часть почвы[2] — совокупность всех видов частиц, находящихся в почве в твёрдом состоянии при естественном уровне влажности.

Поровое пространство в почве[2] — разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.

Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов (наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образование водородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении через кишечник почвенных животных.

Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7—10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.

Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют[8] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.

Новообразования и включения

Основная статья: Почвенные новообразования

Новообразования — скопления веществ, образующиеся в почве в процессе её формирования.

Широко распространены новообразования железа и марганца, чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями. Они представлены конкрециями, трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распространены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса, также характерные для аридных областей, представлены налётами, друзами, гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны — натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.

К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.

Жидкая фаза почв

Состояния воды в почве

В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.

Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) — прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.

Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.

Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее свойства не так резко отличны от свободной воды. Тем не менее сила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.

Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.

При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.

Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.

В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.

Взаимодействие с твёрдой фазой

Почвенный поглощающий комплекс

Основная статья: Почвенный поглощающий комплекс

Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений, наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.

Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) — общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии — а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.

Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве — с большей атомной массой, хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия, чем протонов водорода, а каолинит — наоборот.

Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.

Почвенная кислотность

Почвенный воздух.

Почвенный воздух состоит из смеси различных газов:

  1. кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;
  2. углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;
  3. метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;
  4. водород;
  5. сероводород;
  6. азот; более вероятно образование азота в виде более сложных соединений (например, мочевины)

И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.

Живые организмы в почве

Почва — это среда обитания множества организмов. Существа, обитающие в почве, называются педобионтами. Наименьшими из них являются бактерии, водоросли, грибки и одноклеточные организмы, обитающие в почвенных водах. В одном м³ может обитать до 10¹⁴ организмов. В почвенном воздухе обитают беспозвоночные животные, такие как клещи, пауки, жуки, ногохвостки и дождевые черви. Они питаются остатками растений, грибницей и другими организмами. В почве обитают и позвоночные животные, одно из них — крот. Он очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому он глухой и практически слепой.

Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда.

  • Для мелких почвенных животных, которых объединяют под названием нанофауна (простейшие, коловратки, тихоходки, нематоды и др.), почва — это система микроводоемов.
  • Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием микрофауна. Размеры представителей микрофауны почв — от десятых долей до 2-3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей, первичнобескрылые насекомые (коллемболы, протуры, двухвостки), мелкие виды крылатых насекомых, многоножки симфилы и др. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет дышать через покровы. Многие виды не имеют трахейной системы. Такие животные очень чувствительны к высыханию.
  • Более крупных почвенных животных, с размерами тела от 2 до 20 мм, называют представителями мезофауны. Это личинки насекомых, многоножки, энхитреиды, дождевые черви и др. Для них почва — плотная среда, оказывающая значительное механическое сопротивление при движении. Эти относительно крупные формы передвигаются в почве либо расширяя естественные скважины путём раздвигания почвенных частиц, либо роя новые ходы.
  • Мегафауна или макрофауна почв — это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, слепушонки, цокоры, кроты Евразии, златокроты Африки, сумчатые кроты Австралии и др.). Они прокладывают в почве целые системы ходов и нор. Внешний облик и анатомические особенности этих животных отражают их приспособленность к роющему подземному образу жизни.
  • Кроме постоянных обитателей почвы, среди крупных животных можно выделить большую экологическую группу обитателей

1.6. Почва: характеристика, свойства

Педосфера — сложная, специфическая биогенная оболочка земного шара, располагающаяся на суше материков и мелководье морей и озер. Она выполняет роль земной геомембраны, аналогичную функциям биомембран живых организмов. Это своеобразная кожа Земли, через которую осуществляется постоянный обмен веществом и энергией между геосферами планеты — атмосферой, гидросферой, литосферой и живыми организмами биосферы. Почва — геомембрана — регулирует этот обмен, пропуская одни вещества или энергетические потоки и отражая, задерживая, поглощая другие.

Почва — особое природное образование, обладающее рядом свойств, присущих живой и неживой природе; состоит из генетически связанных горизонтов (образуют почвенный профиль), возникающих в результате преобразования поверхностных слоев литосферы под совместным действием воды, воздуха и организмов; характеризуется плодородием. В результате сложных биологических и химических взаимодействий на границе почвы и верхних слоев литосферы происходит образование осадочных пород.

Почвенная оболочка образовалась в результате взаимодействия геофизических оболочек планеты, она — продукт переработки первозданных горных пород и организмов. Почва обладает развитым плодородием, т.е. способностью производить урожай растений.

Основоположник классического почвоведения В.В.Докучаев дал следующее определение почве: это особое естественно-историческое тело, образующее верхнюю рыхлую оболочку земной коры, сформированную при совокупном воздействии элементов физико-географической среды и организмов.

Почва неоднородна по вертикали. Она представляет собой комплекс горизонтов, различающихся физическими свойствами, окраской, общим обликом и т.д. Совокупность генетических почвенных горизонтов объединяется в понятие «профиль почвы».

Каждая почва имеет свой, характерный для нее профиль, т.е. последовательность и характер горизонтов. Генетические горизонты почвы тесно связаны и являются продуктом химического и физического взаимодействия, аккумуляции, миграции и дифференциации вещества при почвообразовании. Количество, сочетание, степень выраженности и свойства этих горизонтов являются устойчивыми и характерными признаками для определенных типов и разновидностей почв.

Мощность почвенного профиля зависит от условий почвообразования и от продолжительности почвообразовательного процесса. Так, в полярном климате, где неблагоприятные условия для жизнедеятельности организмов, низкие температуры, мерзлота, замедленное физическое и химическое выветривание пород, образуются малоразвитые почвы с мощностью не более 10-20 см.

В условиях жаркого, влажного тропического климата, где жизнедеятельность организмов повышена, а продукты выветривания и почвообразования не удаляются эрозионными процессами, мощность почв достигает десятков метров. Таким образом, она не ограничивается пахотным слоем, а определяется глубиной преобразующего воздействия наземных климатических факторов, корневой системой растений и почвенной фауны.

Почва обладает специфическими физическими свойствами (которых нет у горных пород): рыхлостью, структурой, водопроницаемостью, водоудерживающей способностью, аэрацией и поглотительной способностью. Благодаря высокой дисперсности почва может удерживать в поглощенном состоянии различного рода ионы, газы и пары. Специфические физические свойства почвы создают благоприятные условия для развития корневых систем растений и заселения ее высшими и низшими организмами.

Важнейшим химическим свойством почвы является накопление в верхнем горизонте профиля гумуса, продукта отмирания растений, почвенных животных и микроорганизмов. Органическое вещество гумуса служит материальной основой жизнедеятельности почвенных микроорганизмов. В состав гумуса входят важнейшие элементы, соединения которых необходимы для питания растений: азот, фосфор, калий и др.

Почвенная влага содержит различные газы, растворенные соли, питательные и токсические вещества. В почвенном воздухе найдены повышенные количества углекислоты, углеводороды, водяные пары. Почва в отличие от горной породы биогенна. Верхняя часть почвенного профиля пронизана массой корневых систем, которые, непрерывно отрастая, отмирая, разлагаясь, являются основой для жизни микроорганизмов и животных. В 1 грамме почвы гумусового горизонта насчитывают сотни миллионов и миллиардов микроорганизмов. Многочисленные насекомые, роющие животные густо населяют почву и являются после отмирания источником органического вещества для жизнедеятельности микроорганизмов. Почвенные бактерии и грибы принимают активное участие в образовании гумусовых веществ, неспецифических органических соединений, специфических ферментов, антибиотиков, иногда токсинов.

Таким образом, почва представляет собой многофазную, полидисперсную систему, состоящую из различных по размеру механических элементарных частиц, минеральных или органических, микроагрегатов, крупных структурных единиц и их групп. Значительная часть почвы (около 50%) занята твердой фазой. Остальная часть представлена живым веществом, водой и воздухом.

Серые лесные почвы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2019; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2019; проверки требуют 4 правки. Верхняя часть профиля светло-серой лесной почвы

Се́рые лесны́е по́чвы формируются в лесостепной зоне в условиях периодически-промывного водного режима под пологом широколиственных (дубовые с примесью липы, клёна, ясеня), смешанных (берёзовые с примесью пихты и сосны или сосново-берёзовые с примесью лиственницы) или мелколиственных (берёзовые с примесью осины) лесов с разнообразной и обильной травяной растительностью. Один сантиметр почвы образуется в природе за 250—300 лет, двадцать сантиметров — за 5—6 тысяч лет.[источник не указан 2232 дня]

Серые лесные почвы широко распространены в умеренном поясе Северного полушария. Материнские породы представлены: в европейской части России — лёссами, лёссовидными и покровными суглинками, иногда — моренными отложениями; в Западной и Восточной Сибири — преимущественно лёссовидными суглинками и глинами. Рельеф — волнистый, сильно и глубоко расчленённый водной эрозией в европейской части; равнинный — в Западной Сибири; полого-увалистый, либо бугристый микро- и мезорельеф — в Восточной Сибири.

Изучение происхождения серых лесных почв связано в России с именами В. В. Докучаева, С. И. Коржинского, В. И. Талиева, В. Р. Вильямса, И. В. Тюрина и других учёных. В. В. Докучаев (1883) считал, что серые лесные почвы сформировались как самостоятельный зональный тип под травянистыми широколиственными лесами (дубравами) лесостепной зоны. С. И Коржинский (1887) развил гипотезу об образовании серых лесных почв в результате деградации (ухудшения свойств) чернозёмов при воздействии на них леса.

В противоположность гипотезе С. И. Коржинского В. И. Талиев и П. Н. Крылов разработали теорию образования серых лесных почв в результате проградации (улучшения свойств) почв, ранее развивавшихся по подзолистому типу при смене биоклиматических условий. Близкое суждение об образовании серых лесных почв высказывал В. Р. Вильямс. Исследования И. В. Тюрина (1935) показали, что серые лесные почвы восточных районов европейской территории зоны образовались вследствие эволюции почв типа дерново-глеевых при изменении их водного режима в результате развития дренированности территории овражно-балочной сетью и речными долинами.

Все рассмотренные теории отражают возможные пути образования серых лесных почв в разных физико-географических условиях, обеспечивающих формирование довольно хорошо гумисированного профиля с признаками оподзоленности. Современное понимание генезиса серых лесных почв заключается в том, что этот тип почв сформировался под преобладающим влиянием дернового процесса в сочетании со слабым развитием подзолистого процесса при участии лессиважа[1].

Профиль светло-серой лесной почвы
  • A0 — лесная подстилка, маломощная (до 3—5 см).
  • A1 — гумусовый горизонт серого цвета, комковато-мелкозернистой или комковато-зернисто-пылеватой структуры, маломощный (15—30 см), густо пронизан корнями растений, образующими в верхней части дернину.
  • A1A2 — гумусово-элювиальный горизонт, светло-серого цвета, комковатой или комковато-плитчатой структуры, с обильной белёсой кремнезёмистой присыпкой; в тёмно-серых лесных почвах может отсутствовать.
  • BA2[2] — элювиально-иллювиальный горизонт серовато-бурого или серовато-коричневого цвета, мелкоореховатой структуры, поверхность отдельностей покрыта слоем кремнезёмистой присыпки.
  • B — иллювиальный горизонт, буровато-коричневого цвета, хорошо выраженной ореховатой или призмовидно-ореховатой структуры. Поверхность отдельностей покрыта тёмно-бурыми или тёмно-коричневыми глянцевидными плёнками органического или органоминерального состава. По степени выраженности названных признаков может подразделяться на горизонты B1 и B2.
  • (к) — переходный горизонт от иллювиального к материнской породе. Характеризуется меньшим количеством иллювиальных плёнок, менее чёткой структурой и меньшей плотностью, чем горизонт B. Часто присутствуют новообразования карбонатов в виде псевдомицелия, журавчиков, белоглазки и нечётких пятен.
  • Ск — материнская порода.
Физико-химические свойства серых лесных почв[3]
Горизонт
(глубина, см)
Гумус, %Потеря массы
при прокаливании, %
Обменные основанияГидролитическая
кислотность
Степень насыщенности
основаниями, %
pH
Ca2+Mg2+Σ(Ca2++Mg2+)
мг-экв/100 г почвыH2OKCl
Светло-серая лесная сильнооподзоленная на лёссовидном суглинке
A0 (0—3)69,676,35,9
A1 (3—9)4,457,1411,13,114,25,472,46,85,6
A1A2 (9—17)1,793,066,43,29,63,970,96,95,5
BA2 (26—36)0,411,978,02,910,92,382,86,85,3
B1 (45—65)0,283,0112,97,019,93,883,95,84,5
B2 (75—90)0,212,7113,06,119,14,381,75,84,3
B3 (105—120)2,3311,25,016,23,383,05,74,2
BCк (130—145)9,117,66,6
Тёмно-серая слабооподзоленная на лёссовидном суглинке
A0 (0—2)73,096,46,1
A1 (2—13)6,348,2019,46,225,63,089,46,45,5
A1A2 (15—25)2,563,9016,06,422,42,889,06,95,7
B1 (30—45)1,54,1119,24,824,02,391,26,85,5
B2 (60—75)0,963,4417,67,425,02,491,16,55,5
B3 (95—115)0,582,6216,08,024,02,092,26,65,3
BCк (135—145)5,398,17,3

Согласно Классификации почв СССР 1977 года, тип серых лесных почв подразделяется на три подтипа:

  • Светло-серые лесные: гумусовый горизонт маломощный — 15—20 см, светло-серого цвета, как и гумусово-элювиальный, отличающийся сланцеватой или плитчатой структурой; иллювиальный горизонт хорошо выражен, очень плотного сложения, ореховатой структуры. Содержание гумуса от 1,5—3 % до 5 %, в его составе преобладают фульвокислоты, что обусловливает кислую реакцию почв данного подтипа. В целом, по морфологическим признакам и свойствам близки к дерново-подзолистым почвам.
  • Серые лесные: дерновый процесс выражен сильнее, а подзолистый — слабее, нежели в светло-серых. Гумусовый горизонт серого цвета, мощностью 25—30 см, содержание гумуса — от 3—4 % до 6—8 %, в его составе незначительно преобладают гуминовые кислоты. Почвенный раствор имеет кислую реакцию среды. Элювиально-иллювиальный горизонт может быть не выражен.
  • Тёмно-серые лесные: среди серых лесных почв выделяется наиболее интенсивным дерновым процессом и наименее — подзолистым (кремнезёмистая присыпка необильная, иногда может вообще отсутствовать). Мощность гумусового горизонта — до 40 см, содержание гумуса — от 3,5—4 % до 8—9 %, гуминовые кислоты преобладают над фульвокислотами. Реакция среды — слабокислая. Характерно наличие новообразований кальция на глубине 120—150 см.
Фациальные подтипы серых лесных почв
Светло-серые лесные тёплые промерзающиеСветло-серые лесные умеренно тёплые промерзающиеСветло-серые лесные умеренные длительно промерзающиеСветло-серые лесные умеренно холодные длительно промерзающие
Светло-серые лесные тёплые промерзающие освоенныеСветло-серые лесные умеренно тёплые промерзающие освоенныеСветло-серые лесные умеренные длительно промерзающие освоенныеСветло-серые лесные умеренно холодные длительно промерзающие освоенные
Светло-серые лесные тёплые промерзающие окультуренныеСветло-серые лесные умеренно тёплые промерзающие окультуренныеСветло-серые лесные умеренные длительно промерзающие окультуренныеСветло-серые лесные умеренно холодные длительно промерзающие окультуренные
Серые лесные тёплые промерзающиеСерые лесные умеренно тёплые промерзающиеСерые лесные умеренные длительно промерзающиеСерые лесные умеренно холодные длительно промерзающиеСерые лесные холодные длительно промерзающие
Серые лесные тёплые промерзающие освоенныеСерые лесные умеренно тёплые промерзающие освоенныеСерые лесные умеренные длительно промерзающие освоенныеСерые лесные умеренно холодные длительно промерзающие освоенныеСерые лесные холодные длительно промерзающие освоенные
Тёмно-серые лесные тёплые промерзающиеТёмно-серые лесные умеренно тёплые промерзающиеТёмно-серые лесные умеренные длительно промерзающиеТёмно-серые лесные умеренно холодные длительно промерзающиеТёмно-серые лесные холодные длительно промерзающие

Выделяются рода:

  • Обычные
  • Остаточно-карбонатные
  • Контактно-луговатые
  • Пестроцветные
  • Со вторым гумусовым горизонтом

Разделение на виды производится по:

  • глубине вскипания
    • высоковскипающие (выше 100 см)
    • глубоковскипающие (глубже 100 см)
  • мощности гумусового горизонта (A1+A1A2)
    • мощные (>40 см)
    • среднемощные (40—20 см)
    • маломощные (<20 см)

Сельскохозяйственное использование[править | править код]

Серые лесные почвы активно используются в сельском хозяйстве для выращивания кормовых, зерновых и плодоовощных культур. Для повышения плодородия применяют систематическое внесение органических и минеральных удобрений, травосеяние и постепенное углубление пахотного слоя. В связи со слабовыраженной способностью серых лесных почв к накоплению нитратов[4], азотные удобрения рекомендуется вносить в ранневесенний период.

Отличаются довольно высоким плодородием и при правильном использовании дают хорошие урожаи сельскохозяйственных культур. Особое внимание в зоне серых лесных почв необходимо обратить на мероприятия по борьбе с водной эрозией, так как она охватила большие площади пахотных земель. В некоторых провинциях эродированные в разной степени почвы составляют 70-80 % площади пашни. В результате недостаточного внесения органических удобрений содержание гумуса в пахотном слое серых лесных почв уменьшается. Для оптимального содержания гумуса должны вноситься органические удобрения. Среднеежегодная доза — 10 т на 1 га пашни, что достигают использованием навоза, торфа, различных органических компостов, сидератов, соломы и других органических материалов. Важным мероприятием при земледельческом использовании серых почв является известкование. При известковании нейтрализуется избыточная кислотность серых лесных почв и улучшается поступление питательных веществ в корни растений. Известь мобилизует фосфаты почвы, что приводит к увлечению доступного для растений фосфора; при внесении извести возрастает подвижность молибдена, усиливается микробиологическая деятельность, увеличивается уровень развития окислительных процессов, больше образуется гуматов кальция, улучшаются структура почв, качество растениеводческой продукции Большинство серых лесных почв содержит недостаточное количество усвояемых форм азота, фосфора и калия, поэтому применение минеральных удобрений является мощным фактором повышения урожайности сельскохозяйственных культур.

Существенное значение для повышения плодородия серых лесных почв имеет регулирование их водного режима[5].

  1. ↑ Ковриго, Кауричев, Бурлакова, 2000.
  2. ↑ Обычно этот горизонт обозначают как A2B, однако правильнее его обозначать как BA2, тем самым указывая на незначительное проявление элювиального процесса и на принципиальное отличие этого горизонта от горизонта A2B подзолистых почв.
  3. ↑ Основы почвоведения, 2004, с. 276.
  4. ↑ Основы почвоведения, 2004, с. 278.
  5. ↑ Ковриго, Кауричев, Бурлакова, 2000, с. 273.

Состав и структура почв :: SYL.ru

Без почвы невозможна жизнь на планете. На ней растут деревья, кустарники, травы, цветы. В ней живут организмы, которыми питаются более крупные животные. Она является местом произрастания культурных растений, на ней строятся дома. Чтобы осуществлять хозяйственную деятельность, важно знать такие характеристики, как структура почв, ее состав и свойства.

Что такое почва?

Ее определение неоднозначно. По Докучаеву – это горные породы, залегающие в наружном слое. Их изменение происходило под влиянием многих факторов: воздуха, воды, организмов различного происхождения.

Хлопин дает другое определение, по которому почвой является слой земной коры, залегающий сверху. На нем строят свою жизнь организмы органического происхождения.

Структура почв

Почва является плодородным слоем грунта, который перерабатывают растения и организмы, находящиеся в нем. Ее образование происходит под влиянием космических факторов: тепла, света, атмосферных осадков. Характеристика зависит от того, какая структура почвы, ее состав и свойства.

Что называется структурой почвы?

Это почвенные комочки, которые называют агрегатами, взятые в совокупности. Они имеют разную форму и величину. Структура почв образована их частицами, которые связаны друг с другом силой молекулярной природы. Наибольшее значение отводится структуре верхнего горизонта, потому что в нем происходит развитие живых микроорганизмов и корней растений, которые получают отсюда питание и воду.

Какая структура почвы

В состав почвы входит твердая, жидкая и газообразная компонента. Очень важно, чтобы в этом слое их соотношение было оптимальным, то есть 50:25:25. Кроме этого, в ней много микроорганизмов растительного и животного происхождения.

Твердая компонента

Состав и структура почв различаются. Но неизменным остается то, что твердая компонента содержится в ней в большем количестве. Она представляет собой минеральную и органическую часть. Причем первичных минералов, которые остались от почвообразующей породы, больше, а вторичных меньше. Последние являются результатом разложения первичных пород и представлены глинистыми минералами и солями: сульфатами, карбонатами, галоидами и другими, которые выпадают в осадок под воздействием почвенных вод. По процентному содержанию минералов-солей в почве судят о степени ее засоленности.

Состав и структура почв

Органической частью почвы является гумус, который представляет собой сложное вещество органического происхождения. Его образование – результат разложения остатков отмерших растений и животных. По наличию гумуса в составе почвы судят о ее плодородии, ведь он богат питательными веществами и биогенными элементами. Самыми плодородными являются черноземы, так как они богаты гумусом.

Жидкая компонента

Это вода: свободная, связанная, капиллярная, парообразная, которая является составной частью почвы. Перемещение свободной воды по порам происходит в результате воздействия силы тяжести. Вода связанная образует на поверхности частиц пленку. Тонкие поры удерживают воду капиллярную благодаря менисковым силам. Местом нахождения парообразной воды являются свободные от воды поры. Для корней растений самой доступной является капиллярная и свободная вода.

Свойства почвы структура

Жидкая компонента называется почвенным раствором. В нем могут содержаться соли, органические растворимые кислоты и их производные, если это свободная или капиллярная вода. Связанная вода трудно растворяет вещества.

Газообразная часть почвы

Это воздух в почве, которым заполнены все пустоты и поры. В нем меньше кислорода, чем в атмосферном, и больше углерода. Его выделяют остатки растений при разложении и организмы во время дыхания. Почвенный воздух содержит аммиак, метан. Во влажной почве его меньше, так как он вытесняется из пор водой. Чтобы растения нормально росли и развивались, воздух в почве должен составлять 15 процентов от ее объема.

Механический состав

Этот показатель является важным для определения качества почвы и ее плодородия. При разбивке нового садового участка не обойтись без определения механического состава почвы, чтобы решить, что на ней выращивать. Почвы с учетом данного показателя бывают:

  • Песчаные. В них много песка и мало перегноя. Структура почв данного типа характеризуется воздушностью и хорошей пропускной способностью воды, поэтому они называются легкими. Для многих сельскохозяйственных культур такие почвы невыгодны, так как они нуждаются в частых поливах и большом количестве органических удобрений, которые являются основной питательной средой для растений.
  • Супесчаные. Эти почвы лучше, чем предыдущие. Они легки в обработке, воздушны, быстро высыхают после дождя, не образуя корку. Эти почвы наилучшим образом подходят для сада, так как в них задерживается вода, что обеспечивает хорошую связку минеральных веществ.
Изменение структуры почвы
  • Глинистые. У этих почв большая вязкость и плотность, они трудно обрабатываются. По этим причинам их называют тяжелыми. Перекапывая участок, не избежать образования больших комков. В засуху глинистые почвы растрескиваются, в период затяжных дождей заплывают, на поверхности образуется корка. Несмотря на существенные недостатки, в них хорошо задерживаются питательные вещества.
  • Суглинистые — содержат большие запасы питательных веществ, доступных для растений, и пылевых частиц. Их структура зернистая, обработка не вызывает трудностей. Такие почвы называют средними, они годны для любых культур.
  • Мергельные. Содержат много извести. Эти почвы похожи на суглинистые. Структура почв может быть изменена, если в нее внести органические и минеральные удобрения.
  • Каменные — покрывают склоны холмов и гор. Они небогаты питательными веществами, так как вода их постоянно смывает. Но если потрудиться, на склоне можно разбить участок под сад, который будет прекрасно смотреться. А выращивать здесь можно все что угодно, особенно с южной стороны сада.

Физические свойства почвы

Структура во многом определяет качественный показатель почвы, который очень важен при выращивании сельскохозяйственных культур, строительстве сооружений и многом другом. Основным свойством почвы является плодородие. Но она характеризуется и другими показателями:

  • Пористостью, при определении которой учитывается форма и величина зерен. В крупнозернистых почвах пор немного.
  • Капиллярностью почвы, то есть ее способностью поднимать грунтовые воды. Высокой капиллярностью обладают мелкозернистые почвы, такие как черноземы. Поэтому на них не рекомендуется строить какие-либо сооружения. Для этого лучше подходят крупнозернистые почвы.
  • Влагоемкостью почвы, которая определяется ее способностью удерживать влагу. Этот показатель очень важен при создании внутри помещения оптимального режима влажности.
  • Гигроскопичностью, которая определяется способностью притягивать из воздуха пары воды. У крупнозернистых почв минимальная гигроскопичность.
  • Почвенным воздухом, который контактирует с атмосферным, и отличается от него по составу. Им заполняются поры, расположенные между частицами.
  • Почвенной влагой, от которой зависит жизнь микроорганизмов. Она присутствует в почве в трех состояниях: газообразном, связанном и жидком.

Структура почвы: как ее улучшить?

Можно произвести улучшение структуры почвы известкованием, как это делают в нечерноземных районах нашей страны. Кальций в составе почвенных коллоидов способствует формированию комочков почвы: это когда отдельные песчинки, глинистые или органические частицы слипаются.

Улучшение структуры почвы

Изменение структуры почвы с помощью внесения в нее органических удобрений способствует ее улучшению. Органика способна образовывать гумусовые вещества, которые являются составной частью коллоидов, за счет чего происходит оструктуривание почвы.

Неплохих результатов можно добиться мульчированием почвы с применением измельченных остатков растений. Мульча заделывается глубоко в грунт или раскладывается на его поверхности. Это будет препятствовать переуплотнению почвы и ее обесструктуриванию. Улучшить структуру почвы можно с помощью дождевых червей, которые неутомимо рыхлят ее, делая легкой и воздушной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *