HomeЗимаЗимостойкость растений – Декоративные и цветущие растения для регионов, расположенных в климатической зоне 3-4 (1 часть от А до Я)

Зимостойкость растений – Декоративные и цветущие растения для регионов, расположенных в климатической зоне 3-4 (1 часть от А до Я)

Зимостойкость растений

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки. Зимостойкость — это способность растений противостоять целому ком­плексу неблагоприятных факторов внешней среды в зимнее время. Помимо прямого действия мороза многолетним травянистым и древесным культурам, озимым растениям в тече­ние зимы угрожает еще ряд неблагоприятных факторов. Тем­пература может существенно колебаться — морозы нередко сменя­ются кратковременными и длительными оттепелями. В зимнее время нередки снежные бури, а в бесснежные зимы в более южных районах страны — и суховеи. Все это истощает растения, которые после перезимовки выходят сильно ослабленными и в последующем могут погибнуть.

Особенно многочисленные неблагоприятные воздействия ис­пытывают

травянистые многолетние и однолетние растения. На территории России в неблагоприятные годы гибель посевов озимых зерновых достигает 30-60 %. Кроме низких температур озимые растения повреждаются и гибнут от ряда других неблагопри­ятных факторов в зимнее время и ранней весной: выпревания, вымокания, ледяной корки, выпирания, повреждения от зимней засухи.

Выпревание занимает первое место среди перечисленных невзгод. Гибель растений от выпревания наблюдается преимущест­венно в теплые зимы с большим снеговым покровом, который лежит 2-3 мес., особенно если снег выпадает на мокрую и талую землю. Исследования показали, что при­чиной гибели озимых от выпревания является истощение растений (И. И. Туманов, 1932). На­ходясь под снегом при температуре около О °С в сильно увлаж­ненной среде, почти полной темноте, т. е. в условиях, при кото­рых процесс дыхания идет достаточно интенсивно, а фотосинтез исключен, растения постепенно расходуют сахара (содержание сахаров в тканях уменьшается

с 20 до 2-4 %) и другие запа­сы питательных веществ, накопленные в период прохождения первой фазы закаливания, и погибают от истощения и весенних заморозков. Такие растения весной легко повреждаются снежной плесенью, что также приводит к их гибели.

Н. А. Максимов (1958) отмечал, что при температуре немного выше О °С растения скорее проходят яровизацию, чем при температуре ниже О °С, но вместе с тем теряют свою устойчивость к морозу и затем быстро погибают при сходе снегового покрова и весенних заморозков.

Устойчивость сортов озимых против выпревания в районах с очень глубоким сне­говым покровом обусловливается прежде всего накоплением достаточного запаса растворимые углеводов, а также возможно меньшей интенсивностью дыхания при понижен­ных температурах.

Вымокание проявляется преимущественно весной в

пониженных местах в период таяния снега, реже во время длительных оттепелей, когда на поверхности почвы накап­ливается талая вода, которая не впитывается в замершую почву и может затопить растения. В этом случае причиной гибели растений служит резкий недостаток кислорода (гипоксия). Отсутствие кислород усиливает анаэробное дыха­ние растений, в результате чего могут образоваться токсичные вещества и растения погибают от истощения и прямого отравле­ния организма. Основной продукт анаэробного дыхания — спирт. Накаплива­ются продукты анаэробного превращению углеводов (пируват, лактат, этанол, ацетальдегид), увеличивается содержание свобод­ного пролина, накопление которого рассматривается как один из способов адаптации растений к гипоксии. В условиях избытка влаги в почве образуются вредные для растении закисные соеди­нения, ряд ЭМП переходит в неус­вояемое состоящее. В условия анаэробиозиса у озимых наруша­ется
ультраструктура
и связь пигментов с белково-липидным комплексом мембран хлоропластов, снижаются содержание хло­рофилла и активность нитратредуктазы.

Озимая пшеница более устойчива к вымоканию (гипоксии), чем озимая рожь. У более устойчивых к гипоксии сортов озимой пшеницы ткани корневой системы имеют более развитые межклеточники и воздушные полости, при недостаточной аэрации почвы образуются мелкие дополнительные корни у самой по­верхности (на поверхности) почвы.

Растения, выходящие из-под снега весной, при низких температурах воздуха и воды относи­тельно устойчивы к затоплению. С повышением температуры устойчивость резко снижается. Так, для многих травянистых растений повышение температуры воды до 10 °С в течение суток приводит к снижению урожая на 1/3, за 2 сут — примерно наполовину, а при сохранении повышенной температуры в течение 8 сут урожай практически равен нулю.

Гибель под ледяной коркой отмечается в районах, где частые оттепели сменяются сильными морозами (на обширных площадях, особенно в Поволжье и на юге Украины). При этом происходит образование как висячих так и притертых (контактных) ледяных корок. Менее опасны висячие корки, так как они образуются сверху почвы и практически не соприкасаются с растениями, их легко разрешить катком.

При образовании же сплошной ледяной контактной корки растения повергаются очень сильному механическому давлению. Причина гибели состоит в том, что растения утрачивают морозоустойчивость из­-за прекращения аэрации (образуются спирт и другие токсичные вещества), потому что лед практически непрони­цаем для газов, а также вследствие усиления влияния низких температур.

Если ледяная корка нетолстая и вмерзают только узлы кущения, а листья находятся на воздухе, то такие растения выживают, поскольку воздух проникает по межклеточникам из листьев в корневую систему.

Ледяная корка не образуется, если после оттепели выпадает снег, не позволяющий морозу глубоко про­никнуть в почву, тем самым предотвращая его повреждающее воздействие на растения.

Выпирание — повреждение и гибель растений обусловлена разрывами корневой системы. Выпирание рас­тений наблюдается, если осенью морозы наступают при отсутст­вии снежного покрова или если в поверхностном слое почвы мало воды (при осенней засухе), а также при оттепелях, если снеговая вода успеет всосаться в почву. В этих случаях замерзание воды начинается не с поверхности почвы, а на некоторой глубине (где есть влага). Образующаяся на глубине прослойка льда постепенно утолщается за счет продолжающегося поступления воды по по­чвенным капиллярам и

поднимает (выпирает) верхние слои почвы вместе с растениями, что приводит к обрыву корней растений.

Весной после оттаивания почвы растения остаются лежат на поверхности почвы и погибают от иссушения, если не происходит их вторичное укоренение. Своевременное прикатывание растений (почвы) стимулирует образование у них новых корней. Устойчи­вость растений к выпиранию определяется способностью корней к растяжению. На этом основан и метод отбора растений на устойчивость к выпиранию в селекционном процессе.

Повреждения от зимней засухи. В условиях бесснежной или малоснежной зимы, озимые злаки, как и плодовые деревья и кустарники, часто подвергаются опасности чрезмерного иссушения постоянными и сильными ветрами, особенно в конце зимы при значительном нагреве солнцем.

Для уменьшения испарения воды плодовые древесные породы образуют на ветвях мощный слой

пробки, сбрасывают на зиму листья. При длитель­ном осеннем бесснежье наблюдается привядание озимых злаков, которое скорее полезно, так как способствует повышению моро­зоустойчивости озимых, что важно при отсутствии снегового покрова. Значи­тельный вред причиняет ранняя осенняя засуха, препятствуя кущению и укоренению озимых, их закалке. Весной иссушение надземных частей перезимовав­ших растений за счет солнечного прогрева и ветра усугубляется недостаточным притоком воды из почвы, которая в это время еще недостаточно прогрета. Устойчивый снеговой покров предохраняет озимые злаки от зимнего вы­сыхания.

Повышение зимостойкости растений. Подбор и селекция видов и сортов с-х культур, наиболее приспо­собленных к комплекса неблагоприятных условий перезимовки конкретного региона. Сорта, проявившие себя в одних районах как наиболее зимо­стойкие, могут оказаться значительно менее устойчивыми в дру­гих. Наиболее полное представление о зимостойкости сорта ози­мых дают полевые испытания, в результате которых растения подвергаются комплексному воздействию сочетания неблагопри­ятных факторов и преобладающему из них, например, для По­волжья — низкие температуры при недостаточном снеговом по­крове, для

Белоруссии или северо-запада Украины — это прежде всего выпревание. Предпочтение отдают сортам, проявившим в данном регионе высокую устойчивость к преобладающему по­вреждающему фактору.

Озимые злаки наиболее устойчивы в начале яровизации по окончании ее устойчивость их снижается. Высокая зимостой­кость лучших сортов озимых в значительной степени объясняет­ся большей продолжительностью яровизации, которую они за­канчивают уже зимой при отрицательных температурах.

Лаборатория физиологии растений МПО «Подмосковье» РАСХН успешно использует в селекционном процессе оценку зимостойкости озимых зерновые культур по комплексу физиоло­гических показателей (рис. ).

ЗИМОСТОЙКОСТЬ

Динамика содержания углеводов, пигментов;

содержание эндогенных регуляторов роста осенью;

интенсивность дыхания после прекращения вегетации;

степень повреждения листьев по ярусам, корневой системы;

интенсивность роста

конусов нарастания при повышенной температуре осенью

листьев весной во 2-й декаде после возобновления вегетации

первичных корней при пониженной температуре формирования

вторичных корней весной или после действия мороза

Меры предупреждения гибели озимых хлебов. Для повышения устойчивости к морозу и другим неблагоприятным факторам особенно слабоустойчивых сортов следует:

  • правильно выбирать сроки посева,

  • поддержание хорошей структуры почвы для создания благоприятного водного, воздушного и теплового режимов,

  • снегозадержание,

  • создание оптимальных ус­ловий питания,

  • осеннее известкова­ние почв (степень повреждения растений коррелирует со снижением величины рН в клетках тканей). Своевременное известкование почв с одновременным внесением удобрений понижает кислотное среды и повышает зимостойкость растений за счет улучшения ионного баланса в органах растений.

  • Особен­но важное значение имеет внесение фосфорно-калийных удобре­ний.

Методы определения жизнеспособности с-х культур в зимний и ранневесенний периоды.

  • метод диагностики состояния зимующих растений в моно­литах.

  • по реакции окрашивания цитоплазмы клеток конуса нарастания — с увеличением степени повреждения растения возрастает сродство цитоплазмы к красителям (лабораторный метод определения зимостойкости).

Зимостойкость растений

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки. Зимостойкость — это способность растений противостоять целому ком­плексу неблагоприятных факторов внешней среды в зимнее время. Помимо прямого действия мороза многолетним травянистым и древесным культурам, озимым растениям в тече­ние зимы угрожает еще ряд неблагоприятных факторов. Тем­пература может существенно колебаться — морозы нередко сменя­ются кратковременными и длительными оттепелями. В зимнее время нередки снежные бури, а в бесснежные зимы в более южных районах страны — и суховеи. Все это истощает растения, которые после перезимовки выходят сильно ослабленными и в последующем могут погибнуть.

Особенно многочисленные неблагоприятные воздействия ис­пытывают травянистые многолетние и однолетние растения. На территории России в неблагоприятные годы гибель посевов озимых зерновых достигает 30-60 %. Кроме низких температур озимые растения повреждаются и гибнут от ряда других неблагопри­ятных факторов в зимнее время и ранней весной: выпревания, вымокания, ледяной корки, выпирания, повреждения от зимней засухи.

Выпревание занимает первое место среди перечисленных невзгод. Гибель растений от выпревания наблюдается преимущест­венно в теплые зимы с большим снеговым покровом, который лежит 2-3 мес., особенно если снег выпадает на мокрую и талую землю. Исследования показали, что при­чиной гибели озимых от выпревания является истощение растений (И. И. Туманов, 1932). На­ходясь под снегом при температуре около О °С в сильно увлаж­ненной среде, почти полной темноте, т. е. в условиях, при кото­рых процесс дыхания идет достаточно интенсивно, а фотосинтез исключен, растения постепенно расходуют сахара (содержание сахаров в тканях уменьшается с 20 до 2-4 %) и другие запа­сы питательных веществ, накопленные в период прохождения первой фазы закаливания, и погибают от истощения и весенних заморозков. Такие растения весной легко повреждаются снежной плесенью, что также приводит к их гибели.

Н. А. Максимов (1958) отмечал, что при температуре немного выше О °С растения скорее проходят яровизацию, чем при температуре ниже О °С, но вместе с тем теряют свою устойчивость к морозу и затем быстро погибают при сходе снегового покрова и весенних заморозков.

Устойчивость сортов озимых против выпревания в районах с очень глубоким сне­говым покровом обусловливается прежде всего накоплением достаточного запаса растворимые углеводов, а также возможно меньшей интенсивностью дыхания при понижен­ных температурах.

Вымокание проявляется преимущественно весной в пониженных местах в период таяния снега, реже во время длительных оттепелей, когда на поверхности почвы накап­ливается талая вода, которая не впитывается в замершую почву и может затопить растения. В этом случае причиной гибели растений служит резкий недостаток кислорода (гипоксия). Отсутствие кислород усиливает анаэробное дыха­ние растений, в результате чего могут образоваться токсичные вещества и растения погибают от истощения и прямого отравле­ния организма. Основной продукт анаэробного дыхания — спирт. Накаплива­ются продукты анаэробного превращению углеводов (пируват, лактат, этанол, ацетальдегид), увеличивается содержание свобод­ного пролина, накопление которого рассматривается как один из способов адаптации растений к гипоксии. В условиях избытка влаги в почве образуются вредные для растении закисные соеди­нения, ряд ЭМП переходит в неус­вояемое состоящее. В условия анаэробиозиса у озимых наруша­ется ультраструктура и связь пигментов с белково-липидным комплексом мембран хлоропластов, снижаются содержание хло­рофилла и активность нитратредуктазы.

Озимая пшеница более устойчива к вымоканию (гипоксии), чем озимая рожь. У более устойчивых к гипоксии сортов озимой пшеницы ткани корневой системы имеют более развитые межклеточники и воздушные полости, при недостаточной аэрации почвы образуются мелкие дополнительные корни у самой по­верхности (на поверхности) почвы.

Растения, выходящие из-под снега весной, при низких температурах воздуха и воды относи­тельно устойчивы к затоплению. С повышением температуры устойчивость резко снижается. Так, для многих травянистых растений повышение температуры воды до 10 °С в течение суток приводит к снижению урожая на 1/3, за 2 сут — примерно наполовину, а при сохранении повышенной температуры в течение 8 сут урожай практически равен нулю.

Гибель под ледяной коркой отмечается в районах, где частые оттепели сменяются сильными морозами (на обширных площадях, особенно в Поволжье и на юге Украины). При этом происходит образование как висячих так и притертых (контактных) ледяных корок. Менее опасны висячие корки, так как они образуются сверху почвы и практически не соприкасаются с растениями, их легко разрешить катком.

При образовании же сплошной ледяной контактной корки растения повергаются очень сильному механическому давлению. Причина гибели состоит в том, что растения утрачивают морозоустойчивость из­-за прекращения аэрации (образуются спирт и другие токсичные вещества), потому что лед практически непрони­цаем для газов, а также вследствие усиления влияния низких температур.

Если ледяная корка нетолстая и вмерзают только узлы кущения, а листья находятся на воздухе, то такие растения выживают, поскольку воздух проникает по межклеточникам из листьев в корневую систему.

Ледяная корка не образуется, если после оттепели выпадает снег, не позволяющий морозу глубоко про­никнуть в почву, тем самым предотвращая его повреждающее воздействие на растения.

Выпирание — повреждение и гибель растений обусловлена разрывами корневой системы. Выпирание рас­тений наблюдается, если осенью морозы наступают при отсутст­вии снежного покрова или если в поверхностном слое почвы мало воды (при осенней засухе), а также при оттепелях, если снеговая вода успеет всосаться в почву. В этих случаях замерзание воды начинается не с поверхности почвы, а на некоторой глубине (где есть влага). Образующаяся на глубине прослойка льда постепенно утолщается за счет продолжающегося поступления воды по по­чвенным капиллярам и поднимает (выпирает) верхние слои почвы вместе с растениями, что приводит к обрыву корней растений.

Весной после оттаивания почвы растения остаются лежат на поверхности почвы и погибают от иссушения, если не происходит их вторичное укоренение. Своевременное прикатывание растений (почвы) стимулирует образование у них новых корней. Устойчи­вость растений к выпиранию определяется способностью корней к растяжению. На этом основан и метод отбора растений на устойчивость к выпиранию в селекционном процессе.

Повреждения от зимней засухи. В условиях бесснежной или малоснежной зимы, озимые злаки, как и плодовые деревья и кустарники, часто подвергаются опасности чрезмерного иссушения постоянными и сильными ветрами, особенно в конце зимы при значительном нагреве солнцем.

Для уменьшения испарения воды плодовые древесные породы образуют на ветвях мощный слой пробки, сбрасывают на зиму листья. При длитель­ном осеннем бесснежье наблюдается привядание озимых злаков, которое скорее полезно, так как способствует повышению моро­зоустойчивости озимых, что важно при отсутствии снегового покрова. Значи­тельный вред причиняет ранняя осенняя засуха, препятствуя кущению и укоренению озимых, их закалке. Весной иссушение надземных частей перезимовав­ших растений за счет солнечного прогрева и ветра усугубляется недостаточным притоком воды из почвы, которая в это время еще недостаточно прогрета. Устойчивый снеговой покров предохраняет озимые злаки от зимнего вы­сыхания.

Повышение зимостойкости растений. Подбор и селекция видов и сортов с-х культур, наиболее приспо­собленных к комплекса неблагоприятных условий перезимовки конкретного региона. Сорта, проявившие себя в одних районах как наиболее зимо­стойкие, могут оказаться значительно менее устойчивыми в дру­гих. Наиболее полное представление о зимостойкости сорта ози­мых дают полевые испытания, в результате которых растения подвергаются комплексному воздействию сочетания неблагопри­ятных факторов и преобладающему из них, например, для По­волжья — низкие температуры при недостаточном снеговом по­крове, для Белоруссии или северо-запада Украины — это прежде всего выпревание. Предпочтение отдают сортам, проявившим в данном регионе высокую устойчивость к преобладающему по­вреждающему фактору.

Озимые злаки наиболее устойчивы в начале яровизации по окончании ее устойчивость их снижается. Высокая зимостой­кость лучших сортов озимых в значительной степени объясняет­ся большей продолжительностью яровизации, которую они за­канчивают уже зимой при отрицательных температурах.

Лаборатория физиологии растений МПО «Подмосковье» РАСХН успешно использует в селекционном процессе оценку зимостойкости озимых зерновые культур по комплексу физиоло­гических показателей (рис. ).

ЗИМОСТОЙКОСТЬ

Динамика содержания углеводов, пигментов;

содержание эндогенных регуляторов роста осенью;

интенсивность дыхания после прекращения вегетации;

степень повреждения листьев по ярусам, корневой системы;

интенсивность роста

конусов нарастания при повышенной температуре осенью

листьев весной во 2-й декаде после возобновления вегетации

первичных корней при пониженной температуре формирования

вторичных корней весной или после действия мороза

Меры предупреждения гибели озимых хлебов. Для повышения устойчивости к морозу и другим неблагоприятным факторам особенно слабоустойчивых сортов следует:

  • правильно выбирать сроки посева,

  • поддержание хорошей структуры почвы для создания благоприятного водного, воздушного и теплового режимов,

  • снегозадержание,

  • создание оптимальных ус­ловий питания,

  • осеннее известкова­ние почв (степень повреждения растений коррелирует со снижением величины рН в клетках тканей). Своевременное известкование почв с одновременным внесением удобрений понижает кислотное среды и повышает зимостойкость растений за счет улучшения ионного баланса в органах растений.

  • Особен­но важное значение имеет внесение фосфорно-калийных удобре­ний.

Методы определения жизнеспособности с-х культур в зимний и ранневесенний периоды.

  • метод диагностики состояния зимующих растений в моно­литах.

  • по реакции окрашивания цитоплазмы клеток конуса нарастания — с увеличением степени повреждения растения возрастает сродство цитоплазмы к красителям (лабораторный метод определения зимостойкости).

Зимостойкость растений

Зимостойкость как устойчивость к комплексу неблагоприятных факторов перезимовки. Зимостойкость — это способность растений противостоять целому ком­плексу неблагоприятных факторов внешней среды в зимнее время. Помимо прямого действия мороза многолетним травянистым и древесным культурам, озимым растениям в тече­ние зимы угрожает еще ряд неблагоприятных факторов. Тем­пература может существенно колебаться — морозы нередко сменя­ются кратковременными и длительными оттепелями. В зимнее время нередки снежные бури, а в бесснежные зимы в более южных районах страны — и суховеи. Все это истощает растения, которые после перезимовки выходят сильно ослабленными и в последующем могут погибнуть.

Особенно многочисленные неблагоприятные воздействия ис­пытывают травянистые многолетние и однолетние растения. На территории России в неблагоприятные годы гибель посевов озимых зерновых достигает 30-60 %. Кроме низких температур озимые растения повреждаются и гибнут от ряда других неблагопри­ятных факторов в зимнее время и ранней весной: выпревания, вымокания, ледяной корки, выпирания, повреждения от зимней засухи.

Выпревание занимает первое место среди перечисленных невзгод. Гибель растений от выпревания наблюдается преимущест­венно в теплые зимы с большим снеговым покровом, который лежит 2-3 мес., особенно если снег выпадает на мокрую и талую землю. Исследования показали, что при­чиной гибели озимых от выпревания является истощение растений (И. И. Туманов, 1932). На­ходясь под снегом при температуре около О °С в сильно увлаж­ненной среде, почти полной темноте, т. е. в условиях, при кото­рых процесс дыхания идет достаточно интенсивно, а фотосинтез исключен, растения постепенно расходуют сахара (содержание сахаров в тканях уменьшается с 20 до 2-4 %) и другие запа­сы питательных веществ, накопленные в период прохождения первой фазы закаливания, и погибают от истощения и весенних заморозков. Такие растения весной легко повреждаются снежной плесенью, что также приводит к их гибели.

Н. А. Максимов (1958) отмечал, что при температуре немного выше О °С растения скорее проходят яровизацию, чем при температуре ниже О °С, но вместе с тем теряют свою устойчивость к морозу и затем быстро погибают при сходе снегового покрова и весенних заморозков.

Устойчивость сортов озимых против выпревания в районах с очень глубоким сне­говым покровом обусловливается прежде всего накоплением достаточного запаса растворимые углеводов, а также возможно меньшей интенсивностью дыхания при понижен­ных температурах.

Вымокание проявляется преимущественно весной в пониженных местах в период таяния снега, реже во время длительных оттепелей, когда на поверхности почвы накап­ливается талая вода, которая не впитывается в замершую почву и может затопить растения. В этом случае причиной гибели растений служит резкий недостаток кислорода (гипоксия). Отсутствие кислород усиливает анаэробное дыха­ние растений, в результате чего могут образоваться токсичные вещества и растения погибают от истощения и прямого отравле­ния организма. Основной продукт анаэробного дыхания — спирт. Накаплива­ются продукты анаэробного превращению углеводов (пируват, лактат, этанол, ацетальдегид), увеличивается содержание свобод­ного пролина, накопление которого рассматривается как один из способов адаптации растений к гипоксии. В условиях избытка влаги в почве образуются вредные для растении закисные соеди­нения, ряд ЭМП переходит в неус­вояемое состоящее. В условия анаэробиозиса у озимых наруша­ется ультраструктура и связь пигментов с белково-липидным комплексом мембран хлоропластов, снижаются содержание хло­рофилла и активность нитратредуктазы.

Озимая пшеница более устойчива к вымоканию (гипоксии), чем озимая рожь. У более устойчивых к гипоксии сортов озимой пшеницы ткани корневой системы имеют более развитые межклеточники и воздушные полости, при недостаточной аэрации почвы образуются мелкие дополнительные корни у самой по­верхности (на поверхности) почвы.

Растения, выходящие из-под снега весной, при низких температурах воздуха и воды относи­тельно устойчивы к затоплению. С повышением температуры устойчивость резко снижается. Так, для многих травянистых растений повышение температуры воды до 10 °С в течение суток приводит к снижению урожая на 1/3, за 2 сут — примерно наполовину, а при сохранении повышенной температуры в течение 8 сут урожай практически равен нулю.

Гибель под ледяной коркой отмечается в районах, где частые оттепели сменяются сильными морозами (на обширных площадях, особенно в Поволжье и на юге Украины). При этом происходит образование как висячих так и притертых (контактных) ледяных корок. Менее опасны висячие корки, так как они образуются сверху почвы и практически не соприкасаются с растениями, их легко разрешить катком.

При образовании же сплошной ледяной контактной корки растения повергаются очень сильному механическому давлению. Причина гибели состоит в том, что растения утрачивают морозоустойчивость из­-за прекращения аэрации (образуются спирт и другие токсичные вещества), потому что лед практически непрони­цаем для газов, а также вследствие усиления влияния низких температур.

Если ледяная корка нетолстая и вмерзают только узлы кущения, а листья находятся на воздухе, то такие растения выживают, поскольку воздух проникает по межклеточникам из листьев в корневую систему.

Ледяная корка не образуется, если после оттепели выпадает снег, не позволяющий морозу глубоко про­никнуть в почву, тем самым предотвращая его повреждающее воздействие на растения.

Выпирание — повреждение и гибель растений обусловлена разрывами корневой системы. Выпирание рас­тений наблюдается, если осенью морозы наступают при отсутст­вии снежного покрова или если в поверхностном слое почвы мало воды (при осенней засухе), а также при оттепелях, если снеговая вода успеет всосаться в почву. В этих случаях замерзание воды начинается не с поверхности почвы, а на некоторой глубине (где есть влага). Образующаяся на глубине прослойка льда постепенно утолщается за счет продолжающегося поступления воды по по­чвенным капиллярам и поднимает (выпирает) верхние слои почвы вместе с растениями, что приводит к обрыву корней растений.

Весной после оттаивания почвы растения остаются лежат на поверхности почвы и погибают от иссушения, если не происходит их вторичное укоренение. Своевременное прикатывание растений (почвы) стимулирует образование у них новых корней. Устойчи­вость растений к выпиранию определяется способностью корней к растяжению. На этом основан и метод отбора растений на устойчивость к выпиранию в селекционном процессе.

Повреждения от зимней засухи. В условиях бесснежной или малоснежной зимы, озимые злаки, как и плодовые деревья и кустарники, часто подвергаются опасности чрезмерного иссушения постоянными и сильными ветрами, особенно в конце зимы при значительном нагреве солнцем.

Для уменьшения испарения воды плодовые древесные породы образуют на ветвях мощный слой пробки, сбрасывают на зиму листья. При длитель­ном осеннем бесснежье наблюдается привядание озимых злаков, которое скорее полезно, так как способствует повышению моро­зоустойчивости озимых, что важно при отсутствии снегового покрова. Значи­тельный вред причиняет ранняя осенняя засуха, препятствуя кущению и укоренению озимых, их закалке. Весной иссушение надземных частей перезимовав­ших растений за счет солнечного прогрева и ветра усугубляется недостаточным притоком воды из почвы, которая в это время еще недостаточно прогрета. Устойчивый снеговой покров предохраняет озимые злаки от зимнего вы­сыхания.

Повышение зимостойкости растений. Подбор и селекция видов и сортов с-х культур, наиболее приспо­собленных к комплекса неблагоприятных условий перезимовки конкретного региона. Сорта, проявившие себя в одних районах как наиболее зимо­стойкие, могут оказаться значительно менее устойчивыми в дру­гих. Наиболее полное представление о зимостойкости сорта ози­мых дают полевые испытания, в результате которых растения подвергаются комплексному воздействию сочетания неблагопри­ятных факторов и преобладающему из них, например, для По­волжья — низкие температуры при недостаточном снеговом по­крове, для Белоруссии или северо-запада Украины — это прежде всего выпревание. Предпочтение отдают сортам, проявившим в данном регионе высокую устойчивость к преобладающему по­вреждающему фактору.

Озимые злаки наиболее устойчивы в начале яровизации по окончании ее устойчивость их снижается. Высокая зимостой­кость лучших сортов озимых в значительной степени объясняет­ся большей продолжительностью яровизации, которую они за­канчивают уже зимой при отрицательных температурах.

Лаборатория физиологии растений МПО «Подмосковье» РАСХН успешно использует в селекционном процессе оценку зимостойкости озимых зерновые культур по комплексу физиоло­гических показателей (рис. ).

ЗИМОСТОЙКОСТЬ

Динамика содержания углеводов, пигментов;

содержание эндогенных регуляторов роста осенью;

интенсивность дыхания после прекращения вегетации;

степень повреждения листьев по ярусам, корневой системы;

интенсивность роста

конусов нарастания при повышенной температуре осенью

листьев весной во 2-й декаде после возобновления вегетации

первичных корней при пониженной температуре формирования

вторичных корней весной или после действия мороза

Меры предупреждения гибели озимых хлебов. Для повышения устойчивости к морозу и другим неблагоприятным факторам особенно слабоустойчивых сортов следует:

  • правильно выбирать сроки посева,

  • поддержание хорошей структуры почвы для создания благоприятного водного, воздушного и теплового режимов,

  • снегозадержание,

  • создание оптимальных ус­ловий питания,

  • осеннее известкова­ние почв (степень повреждения растений коррелирует со снижением величины рН в клетках тканей). Своевременное известкование почв с одновременным внесением удобрений понижает кислотное среды и повышает зимостойкость растений за счет улучшения ионного баланса в органах растений.

  • Особен­но важное значение имеет внесение фосфорно-калийных удобре­ний.

Методы определения жизнеспособности с-х культур в зимний и ранневесенний периоды.

  • метод диагностики состояния зимующих растений в моно­литах.

  • по реакции окрашивания цитоплазмы клеток конуса нарастания — с увеличением степени повреждения растения возрастает сродство цитоплазмы к красителям (лабораторный метод определения зимостойкости).

Морозоустойчивость растений

Морозоустойчивость- это способность переносить температуру ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже -20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых культур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани зимостойких растений могут замерзать, одна­ко растения не погибают. Большой вклад в изучение физиологических основ морозоустойчивости внесли Я. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие оте­чественные исследователи.

Замерзание растительных клеток и тканей и происходящие при этом процессы. Способность растении переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного я того же растения зависят от условии, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5-1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

Условия и причины вымерзания растений. Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится кон­центрированным, изменяется рН среды. Выкристаллизовавшийся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма под­вергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.

Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивания такие растения могут сохранить жизнеспособность. Так, в лис­тьях капусты при температуре -5…-6 °С образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, ко­торая поглощается клетками, и листья возвращаются в нормаль­ное состояние.

Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели меток растений при низких от­рицательных температурах и льдообразовании являются чрезмер­ное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно.

Летальность действия мороза определяется несколькими обстоя­тельствами. Последствия воздействия низких отрицательных тем­ператур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выно­сить глубокие низкие температуры (до -196 °С). Низкое содер­жание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой кри­тический предел обезвоживания и сжатия.

Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим по­верхностные структуры цитоплазмы, кристаллами льда, наруша­ющими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.

Действие льда, особенно при длительном влиянии низких температур, сходно с обезвоживанием клеток при засухе. При­знаками повреждения клеток морозом являются потеря ими тур­гора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К и сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транс­порта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буре­ют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без об­разования льда) растения переносят без вреда; при тех же темпе­ратурах, но с образованием льда в тканях растения гибнут.

Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до -15…-20 °С.

У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изме­нения. Морозоустойчивые растения обладают приспособлениями, уменьшающими обезвоживание клеток.

  • При понижении температуры у таких растений отмечаются повышение содержа­ния сахаров и других веществ, защищающих ткани (криопротек­торы), это прежде всего гидрофильные белки, моно- и олигоса­хариды;

  • снижение оводненности клеток;

  • увеличение количества полярных липидов и снижение насыщенности их жирнокислотных остатков,

  • увеличение количества защитных белков.

На степень морозоустойчивости растений большое влияние (оказывают сахара, регуляторы роста и другие вещества, образую­щиеся в клетках. В зимующих растениях в цитоплазме накапли­ваются сахара, а содержание крахмала снижается. Влияние саха­ров на повышение морозоустойчивости растений многосторонне (предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образую­щегося льда).

Сахара защищают белковые соединения от коагуляции при вымораживании; они образуют гидрофильные связи с белками цитоплазмы, предохраняя их от возможной денатурации, повышают осмотическое давление и снижают температуру замерзания цитозоля. В результате накопления сахаров содержание прочносвязанной воды увеличивается, а свободной уменьшается. Особое значение имеет защитное влияние сахаров на белки. сосредото­ченные в поверхностных мембранах клетки. Сахара увеличивают водоудерживающую способность коллоидов протоплазмы клеток; связанная с коллоидами вода в виде гидратных оболочек биополимеров при низких температурах не замерзает и не транспор­тируется.

Криопротекторами являются также молекулы гемицеллюлоз (ксиланы, арабиноксиланы), выделяемые цитоплазмой в клеточ­ную стенку, обволакивающие растущие кристаллы льда, что предотвращает образование крупных кристаллов, повреждающих клетку. Так клетки защищаются как от внутриклеточного льда, так и от чрезмерного обезвоживания.

Значительное количество защитных белков и модификации молекул липидов увеличивают структурированность клеток. У большинства растений возрастает синтез водорастворимых белков. Белковые вещества, частично гидролизуясь, увеличивают содержание свободных АК.

В тканях морозоустойчивых растений в конце лета и осенью накапливаются в достаточно количестве запасные вещества (прежде всего сахара), которые используются весной при возоб­новлении роста, обеспечивая потребности растении в строитель­ном материале и энергии. Необходимо также учитывать устойчи­вость растении к болезням, вероятность развития которых увели­чивается при повреждении тканей морозом.

Закаливание растений, его фазы. Морозоустойчивость — не постоянное свойство растений. Она зависит от физиологическо­го состояния растении и условии внешней среды. Растения, выращенные при относительно низких положительных темпера­турах, более устойчивы, чем выращенные при относительно вы­соких осенних температурах. Свойство морозоустойчивости фор­мируется в процессе онтогенеза растения под влиянием определенных условии среды в соответствии с генотипом растения и связано с резким снижением темпов роста, переходом растения в состояние покоя.

Жизненный цикл развития озимых, двуручек, двулетних и многолетних растении контролируется сезонным ритмом свето­вого и температурного периодов. В отличие от яровых однолет­них растении они начинают готовиться к перенесению неблаго­приятных зимних условии с момента остановки роста и затем в течение осени во время наступления пониженных температур.

Повышение морозоустойчивости растении тесно связано с закаливанием — постепенной подготовкой к воздействию низких зимних температур. Закаливание — это обратимая физиологическая устойчивость к неблагоприятным воздействия среды.

Способностью к закаливанию обладают не все растения. Рас­тения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянис­тых растений северных широт, переживающих значительное по­нижение температуры в зимний период, в период летней вегета­ции отсутствует и проявляется только во время наступления осенних пониженных температур (если растение к этому време­ни прошло необходимый цикл развития). Процесс закалки при­урочен лишь к определенным этапам развития растений. Для приобретения способности к закаливанию растения должны за­кончить процессы роста.

Разные органы растении имеют неодинаковую способность к закаливанию, например, листья листопадных деревьев (яблоня, груша, вишня) не обладают способностью к закаливанию, цве­точные почки закаливаются хуже, чем листовые. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы. Выносливость растении к низким температурам в этот период незначительная.

Эффект закаливания может не проявляться, если какая-либо причина (засуха, поздний посев, посадка и др.) произошла задержка развития растений. Так, если в течение дета у плодовых растении процессы роста из-за летней засухи не успе­ли закончиться, то зимой это может привести к гибели растений. Дело в том, что засуха, приостанавливая рост летом, не позволя­ет растениям завершить его к осени. Одновременно при закалке должен произойти отток различные веществ из надземных органов в подземные зимующие (корневые системы, корневища, лу­ковицы, клубни). По этой же причине закаливание травянистых и древесных растений ухудшает избыточное азотное питание, удли­няющее период роста до поздней осени, в результате растения не способны пройти процессы закаливания и погибнут даже при не­больших морозах.

Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в весенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внеш­ней среды.

На озимых культурах убедительно покатана необхо­димость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и накопления ингибиторов в растениях. Вероятно, с этих процессов начинается формирование морозоустойчивости у растений.

Растения, выращенные при несоответствующем фотопериоде не успевают завершить летний рост и не способны к закаливанию. Установлено, что длинный день способствует образованию в лис­тьях черной смородины фитогормонов — стимуляторов роста, а ко­роткий — накоплению ингибиторов. В естественные условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатыва­ются вещества, повышающие устойчивость растения к морозу.

Фазы закаливания. По И. И. Туманову (1979) процесс зака­ливания растений требует определенного комплекса внешние ус­ловий и проходит в две фазы, которым предшествуют замедление роста и переход растении в состояние покоя. Прекращение роста и переход в состояние покоя — необходимые условия прохожде­ния первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

При переходе в состояние покоя изменяется баланс фитогормо­нов: уменьшается содержание ауксина и гиббереллинов и увеличи­вается содержание абсцизовой кислоты, которая, ослабляя и инги­бируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлор­холинхлоридом — ССС или трийодбензойной кислотой) повышает устойчивость растении к низким температурам.

Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влажности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5-2 °С за 6-9 дней, древесные ­за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и рост. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кислот, снижается точка замерзания цитоплазмы, отмечается неко­торое уменьшение внутриклеточной воды.

Благоприятные условия для прохождения первой фазы зака­ливания озимых растений складываются при солнечной и про­хладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию сахаров в корнеплодах лучших сортов сахарной свеклы.

Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до -20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закаливания сахара локализуются в клеточном соке, цитоплазме, клеточ­ных органеллах, особенно в хлоропластах. При закаливании рас­тений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О °С, количество сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений.

В хлоропластах содержатся те же формы сахаров что и в листьях: фруктоза, глюкоза, сахароза, олигосахара (Т. И. Трунова, 1970). Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в после­дующем образования внутриклеточного льда и гибели растений.

Метаболические изменения, наблюдаемые во время первой фазы, могут быть вызваны изменением гормонального и энерге­тического балансов, что определяет синтез и активацию специ­фических ферментов, свойства веточных мембран закаленных тканей. Накапливающаяся в тканях абсцизовая кислота увеличи­вает проницаемость мембран для воды, водоотдачу теток. К. концу первой фазы закаливания все зимующие растения перехо­дят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются.

Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже О °С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10…-20 °С и ниже со скоростью 2-3 °С в сутки, что приво­дит к частичной потере воды ветками, освобождению клеток тканей от избыточного содержания воды иди витрификации (переходу воды в стеклообразное состояние). Явление витрифи­кации воды в растительных клетках наступает при резком охлаж­дении (ниже -20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предо­храняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания. Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цито­плазмы к низким температурам, возрастает относительное коли­чество коллоидно-связанной воды.

Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной темпе­ратуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может при­вести к гибели клеток. Следовательно, чем менее морозоустойчи­во растение, тем медленнее должна протекать вторая фаза зака­ливания.

Действующими факторами второй фазы закаливания являются обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая температура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестрой­ка белков цитоплазмы, накапливаются низкомолекулярные водо­растворимые белки, более устойчивые к обезвоживанию, синтезируются специфические белки. Содержание незамерзающей (связанной) воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой.

Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточни­ки, что снижает опасность внутриклеточного льдообразования. При обезвоживании, происходящем под влиянием льдообразова­ния, наблюдаются сближение и деформация белковых молекул. связи между которыми могут рваться и не восстанавливаются, что пагубно для клетки. Очевидно, при таких условиях происхо­дит быстрое смещение структурных частиц по отношению друг к другу, что приводит к разрушению субмикроскопической струк­туры протопласта (И. И. Туманов).

Цитоплазма закаленных растений более устойчива к механи­ческому давлению. Поэтому важно наличие у молекул белков сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды, препятствуют слишком сильному сближению молекул белка. Между содержанием сульфгидрильных групп и морозоустойчивостью клеток растений установлена положительная связь. Благодаря изменению свойств молекул белков и межмолекулярных связей в процессе закаливания по­степенное обезвоживание приводит к переходу цитоплазмы из состояния золя в гель.

Первая фаза закаливания повышает морозоустойчивость рас­тений с -5 до -12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до -18…-20 °С, у ржи -до -20…-25 °С. Растения, находящиеся в глубоком органическом покое, отлича­ются способностью к закаливанию и выдерживают проморажи­вание до -195 °С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закалива­ния переносила охлаждение до -253 °С (И. И. Туманов. 1979).

Не у всех растений процесс закаливания проходит в две фазы.

У древесных растений, имеющих в тканях достаточное количест­во сахаров, сразу же протекают процессы, свойственные второй фазе закаливания. Однако не все растения способны к закалива­нию. Теплолюбивые растения (хлопчатник, рис, бахчевые куль­туры) при длительном пребывании при температурах немного выше О °С не только не становятся устойчивыми, но еще силь­нее повреждаются или даже погибают, так как в них накаплива­ются ядовитые вещества, усиливающие губительное действие на растения низких температур.

Обратимость процессов закаливания. Морозоустойчивость представляет собой процесс, а не постоянное свойство растений. Процесс закаливания обратим, при этом мо­розоустойчивость растений снижается. Развитие процесса зака­ливания в значительной степени зависит от условий его протека­ния. Особенно заметное влияние на морозоустойчивость оказы­вают условия закаливания растений в осенний период, определяемые в первую очередь соотношением числа ясных дней с пониженными положительными температурами ночью и числа пасмурных, дождливых дней с относительно сближенными высо­кими температурами днем и ночью. Чем это отношение выше, тем лучше условия для закалки (табл.).

Критические температуры (°С) повреждения растений озимой пшеницы при разных условиях закалки

Регион

Условия закалки

хорошие

средние

плохие

Украина, Северный Кавказ Белоруссия

-20

-16

-14

Центрально-Черноземная зона, сев. районы Нечерноземной зоны

-22

-18

-16

Поволжье, Западная Сибирь, Северный Казахстан

-25

-20

-18

У хорошо закаленных растений благодаря высокой концент­рации клеточного сока, пониженному содержанию воды образу­ется значительно меньше кристаллов льда, причем не в клетке а в межклеточниках. Такие растения погибают только при очень, сильных морозах. При закаливании происходят обратимые фи­зиологические изменения. При неустойчивой осенней и зимней погоде приобретенная в процессе закалки морозоустойчивость снижается. Наблюдается тесная связь между морозоустойчивостью растений и ростовыми процессами. Переход к состоянию покоя всегда сопровождается повышением устойчивости, а от достояния покоя к росту — снижением. В связи с этим морозоустойчивость одного и того же вида растений довольно сильно меняется в течение года: летом она минимальная (растения могут погибнуть при температурах намного выше тех, которые они выдерживают зимой), осенью увеличивается, а в конце зимы и в начале весны опять снижается. Повышение температуры весной сопровождается противоположными закаливанию физио­лого-биохимическими изменениями — происходит процесс раз­закаливания растений. Весной растения часто гибнут даже от небольших заморозков.

Способы повышения морозоустойчивости. Основа решения этой задачи -селекция морозоустойчивых сортов растений, хо­рошо адаптирующихся к климатическим условиям данного ре­гиона. Следует еще раз отметить, что процесс закаливания пред­ставляет собой временную адаптацию цитоплазмы, определяющую степень устойчивости к последующим повреждениям низкими температурами. Морозоустойчивость же формируется в соответствии с генотипом в процессе онтогенеза под влиянием определенных условий внешней среды и связана с наступлением периода покоя, его глубиной и длительностью.

Агротехника конкретного вида растений (срок и способ посе­ва и др.) должна максимально способствовать формированию в процессе закалки реализации возможной генетически детерми­нированной морозоустойчивости сорта. В северных и централь­ных районах России с неустойчивой весной и частым возвраще­нием весенних заморозков более устойчивы и урожайны сорта озимых хлебов и плодовых многолетних культур с более глубо­ким зимним покоем, с поздним сроком возобновления весенней вегетации (***). Наоборот, в районах с устойчивым нарастани­ем положительных температур весной преимущество имеют рано вегетирующие виды и сорта растений.

Морозоустойчивость сортов озимой пшеницы определяется не только количеством сахаров, накопленных с осени, но и их экономным расходованием в течение зимы. У растений зимо­стойких сортов озимой пшеницы в зимний период с понижением температуры содержание моносахаридов (глюкоза, фруктоза) увеличивается за счет расщепления сахарозы на глюкозу и фрук­тозу, что снижает точку замерзания клеточного сока. Узел куще­ния злаков, корневая шейка бобовых — своеобразная кладовая энергетических ресурсов растения в зимний период и орган по­бегообразования весной.

Морозоустойчивость растений озимой пшеницы положитель­но коррелирует с содержанием сахаров в узлах кущения. В хороших посевах озимой пшеницы в листьях в декабре содер­жание растворимых углеводов достигает 18-24 % (на сухое вещество), а в узлах кущения — 39-42 %. В опытах более морозоустойчивый сорт озимой пшеницы Мироновская 808 расходовал за зиму всего 10 % углеводов, а менее устойчивый сорт Безостая 1-23 % углеводов. Растения, закладывающие узлы кущения глубоко (3-4 см), как правило, более морозо­устойчивы, чем те, у которых узел кущения находится близко к поверхности (1-2 см). Глубина залегания узла кущения и мощность его развития зависят от качества семян, способа посева, обработки почвы.

На морозоустойчивость существенное влияние оказывают ус­ловия почвенного питания, особенно в осенний период. Устой­чивость растений к морозу возрастает на постоянно известкуе­мых почвах при внесении под посев озимых калийно-фосфорных одобрений, тогда как избыточные азотные удобрения, способст­вуя процессам роста, делают растения озимых более чувствитель­ными к морозам. На морозоустойчивость, как и на холодостой­кость растений, положительное влияние оказывают микроэле­менты (кобальт, цинк, молибден, медь, ванадий и др.)­Например, цинк повышает содержание связанной воды, усиливает накопление сахаров, молибден способствует увеличению со­держания общего и белкового азота.

Методы изучения морозоустойчивости растений. И. И. Тумановым с сотрудниками предложены лабораторные методы уско­ренного определения морозоустойчивости различных культурных растений. Испытуемые растения после закаливания подвергают воздействию критических низких температур в холодильных ка­мерах, что дает возможность выявить невымерзающие растения. Такая ускоренная оценка морозоустойчивости имеет большое преимущество перед обычным полевым способом оценки, так как последний требует много времени (иногда нескольких лет).

Другие надежные и удобные в исполнении лабораторные методы определения морозоустойчивости основаны на измерении вязкости цитоплазмы в клетках тканей исследуемых органов, определении электропроводности и др. Определение морозо­устойчивости культурных растений мирового ассортимента пока­зало, что страны СНГ обладают самыми устойчивыми их форма­ми. Наиболее устойчивые сорта озимой пшеницы выведены опытными учреждениями юго-востока и северо-востока России, где природная обстановка благоприятствует выведению морозо­устойчивых форм.

Зимостойкость и морозостойкость растений России – зоны, таблица, описание


Растительный мир богат и разнообразен, но далеко не все виды способны выживать в суровых климатических условиях. Одной из ключевых характеристик представителей флоры является зимостойкость. Именно она определяет жизнеспособность растений в определенной местности. Опираясь на морозостойкость флоры, необходимо подбирать биологические организмы открытого грунта.

Понятия и особенности зимостойкости и морозоустойчивости растений

От холодостойкости растений напрямую зависит их способность выдержать низкие температуры (в пределах +1…+10 градусов) на протяжении длительного периода времени. Если представители флоры продолжают расти при отрицательных показателях термометра, их смело можно отнести к морозостойким растениям.

Под зимостойкостью понимают способность растений продолжать свою жизнедеятельность в неблагоприятных условиях на протяжении нескольких месяцев (например, начиная с конца осени и заканчивая ранней весной). Низкие температуры – не единственная угроза существования представителей флоры. К неблагоприятным условиям относятся резкие перепады температур, зимнее иссушение, выпревание, длительные оттепели, вымерзание, вымокание, солнечные ожоги, ветровые и снеговые нагрузки, обледенение, возвратные заморозки в период весеннего потепления. Реакция растения на агрессивность окружающей среды и определяет его зимостойкость. Данный показатель не относится к постоянным величинам, он может периодически уменьшаться или увеличиваться. Причем один и тот же вид растений имеет разный уровень зимостойкости.

Зона морозостойкости в России

Нажмите чтобы увеличить

Морозостойкость сложно перепутать с зимостойкостью – данный показатель определяет способность растения выдерживать отрицательные температуры. Данная особенность закладывается на уровне генетики. Именно от степени морозостойкости зависит количество воды в клетках, которое сохраняется в жидком состоянии, а также их устойчивость к обезвоживанию и сопротивление внутренней кристаллизации.

Таблица зон морозостойкости растений USDA

Зона морозостойкостиОтДо
0a−53.9 °C
b−51.1 °C−53.9 °C
1a−48.3 °C−51.1 °C
b−45.6 °C−48.3 °C
2a−42.8 °C−45.6 °C
b−40 °C−42.8 °C
3a−37.2 °C−40 °C
b−34.4 °C−37.2 °C
4a−31.7 °C−34.4 °C
b−28.9 °C−31.7 °C
5a−26.1 °C−28.9 °C
b−23.3 °C−26.1 °C
6a−20.6 °C−23.3 °C
b−17.8 °C−20.6 °C
7a−15 °C−17.8 °C
b−12.2 °C−15 °C
8a−9.4 °C−12.2 °C
b−6.7 °C−9.4 °C
9a−3.9 °C−6.7 °C
b−1.1 °C−3.9 °C
10a−1.1 °C+1.7 °C
b+1.7 °C+4.4 °C
11a+4.4 °C+7.2 °C
b+7.2 °C+10 °C
12a+10 °C+12.8 °C
b+12.8 °C

Благодаря чему растения становятся зимостойкими?

Помимо генетического и наследственного фактора, микроклимата и условий произрастания, существуют другие причины, из-за которых растения обладают устойчивостью к низким температурам:

  • защитная система организма;
  • запасенные на период холодов углеводы и вещества, способные препятствовать кристаллизации воды;
  • структура, состояние и тип почвы;
  • возраст и закаливание растения;
  • наличие подкормки и других минеральных компонентов в почве;
  • уход в весенне-летний период и подготовка растения к зиме.

Зимостойкость биологического организма может меняться на протяжении всей его жизни. Считается, что молодые представители флоры менее устойчивы к низким температурам, нежели взрослые, что часто приводит к их гибели.

Представители зимостойких растений

Яркими представителями холодостойких растений являются ячмень, лен, вика и овес.

Ячмень

Лен

Вика

Овес

К морозостойким видам относят многолетние организмы корнеплодного, клубневого, луковичного типа, а также однолетние – ярового и раскустившиеся – озимого.

Отметим, что в холодный период года больше всего подвержены замерзанию именно корни растения. Если в регионе преобладают отрицательные температуры, то без толстого слоя снега вероятность, что они выживут, достаточно мала. В таких областях необходимо создавать изоляционный слой, мульчируя почву вокруг растения.

Именно в начале зимы (в декабре, январе) растения обладают максимальной зимоустойчивостью. Но с наступлением весны даже незначительные заморозки могут оказать губительное влияние на представителя флоры.

Зимостойкость растений

В зимний период растительный организм, помимо прямого влия­ния мороза, подвергается еще ряду неблагоприятных воздействий. Особенно многочисленные неблагоприятные воздействия испытывают травянистые многолетние и однолетние растения. Так, озимые расте­ния могут погибать от слишком большого снежного покрова (выпре-вание растений). Это связано с тем, что под снегом температура не­сколько повышается (около 0°С) и процесс дыхания идет довольно интенсивно. В результате происходит такая сильная трата Сахаров, что растения могут погибнуть от истощения. В связи с этим в рай­онах с очень глубоким снежным покровом необходимо выведение сортов с повышенным содержанием углеводов.

Частой причиной зимней гибели растений является повреждение, связанное с образованием ледяной корки (выпирание растений). При образовании в почве льда корпи растения разрываются, что, естест­венно, приводит к их гибели. В этом случае важно, чтобы растения обладали большой устойчивостью корневых систем, большой способ­ностью их к растяжению.

В весенний период растения погибают прежде всего от возврата холодов. Растения, перенесшие в зимний период температуру —30°С, могут погибнуть весной при небольших заморозках, так как у них прошли процессы раскаливания. Кроме того, весной в пониженных местах в период таяния снега накапливается вода и растения могут пострадать от вымокания. В этом случае причиной гибели растений служит резкий недостаток кислорода. При недостатке кислорода в клетках растений начинается процесс брожения, что может вызвать прямое отравление организма.

Теплолюбивые растения сильно страдают и даже погибают при положительных пониженных температурах. Это связано с наруше­ниями обменных процессов, из-за чего в организме накапливаются промежуточные продукты метаболизма. В нормальных для данного вида растений температурных условиях все реакции, протекающие в организме, хорошо согласованы друг с другом, продукты одной ре­акции сейчас же перерабатываются. В том случае, если растения попадают в неблагоприятные температурные условия, эта согласо­ванность нарушается. Дело в том, что различные биохимические ре­акции характеризуются разной зависимостью от температуры. Одни реакции при снижении температуры резко замедляются, другие — нет. Именно это приводит к нарушению обмена и к накоплению вредных продуктов, что может вызвать даже гибель растений. За­мечено, что у теплолюбивых растений при понижении температуры резко возрастает вязкость цитоплазмы, нарушается сопряжение окис­ления и фосфорилирования, происходят и другие нарушения.

Устойчивость растений к засолению

Большое количество почв характеризуется повышенным содер­жанием солей, которое может оказывать вредное и даже губительное влияние на растительный организм. Кроме того, неумелое орошение часто приводит к засолению. Вредное влияние концентрации солей может проявляться и при неоправданно повышенных дозах мине­ральных удобрений. В связи со сказанным вонрос о солеустойчивости растений приобретает большое значение.

Причины вредного влияния солей

Засоление связано главным образом с повышенным содержанием натрия в почве. В зависимости от преимущественного накопления отдельных солей натрия засоление может быть сульфатным, хлорид-ным, содовым или смешанным. Наиболее вредное влияние оказыва­ет содовое засоление, поскольку в почве сода распадается, образуя сильную щелочь (гидроксид натрия).

Засоление приводит к созданию в почве низкого водного потен­циала, поэтому поступление воды в растение сильно затруднено. Важнейшей стороной вредного влияния солей является также на­рушение процессов обмена. Работами советского физиолога Б. П. Строганова показано, что под влиянием солей в растениях на­рушается азотный обмен, накапливается аммиак и другие резко ядо­витые продукты. На фоне сульфатного засоления накапливаются продукты окисления серосодержащих аминокислот (сульфоксиды и сульфоны), которые также являются ядовитыми для растений. По­вышенная концентрация солей, особенно хлористых, может действо­вать как разобщитель процессов окисления и фосфорилирования и тем самым нарушать снабжение растений макроэргическими фосфор­ными соединениями. Под влиянием солей происходят нарушения ультраструктуры клеток, в частности изменения в структуре хлоропластов. Особенно это проявляется при хлоридном засолении. Вред­ное влияние высокой концентрации солей связано с повреждением поверхностных слоев цитоплазмы, вследствие чего возрастает ее про­ницаемость, теряется способность к избирательному накоплению ве­ществ. Соли поступают в клетки пассивно вместе с транспирационным током воды. Поскольку в большинстве случаев засоленные поч­вы располагаются в районах, характеризующихся высокой летней температурой, интенсивность транспирации у растений очень высо­кая. В результате солей поступает много и это усиливает поврежде­ние растений.

Надо учесть также, что на засоленных почвах большая концент­рация натрия препятствует накоплению других катионов, в том чис­ле и таких необходимых для жизни растения, как калий и кальций. Отрицательное действие высокой концентрации солей сказывает­ся раньше всего на корневой системе растений. При этом в корнях страдают наружные клетки, непосредственно соприкасающиеся с раствором соли. В стебле наиболее подвержены действию солей клет­ки проводящей системы, по которым раствор солей поднимается к надземным органам.

Солеустойчивость растений. Галофиты

По отношению к солям все растения делят на гликофиты, или растения пресных мест обитания, не обладающие способностью к произрастанию на засоленных почвах, и галофиты — растения за­соленных местообитаний, обладающие способностью, к приспособле­нию в процессе онтогенеза к высокой концентрации солей. По признакам, позволяющим выносить засоление, выделяют три группы галофитов.

К первой группе относят растения, протоплазма которых устой­чива к накоплению большого количества солей. Галофиты этого типа растут на наиболее засоленных почвах (солерос). Растения этой группы настолько приспособлены к произрастанию на засоленных почвах, что при нормальном содержании солей добавление хлористого натрия оказывает благоприятное влияние на их рост. Клетки растений этой группы характеризуются высоким осмотиче­ским давлением, благодаря чему они могут добывать воду из засо­ленной почвы. Так, некоторые солянки накапливают до 7% солей от массы клеточного сока. Одновременно протоплазма этих растений обладает большой гидрофильностью, высоким содержанием белка. Она высокоустойчива к накоплению солей.

Вторая группа галофитов отличается тем, что соли поглощаются корнями, но не накапливаются в клеточном соке. Поглощенные со­ли выделяются через специальные поры, имеющиеся на всех надзем­ных органах, благодаря чему листья этих растений обычно покрыты сплошным слоем солей. Растения данной группы характеризуются очень высокой интенсивностью фотосинтеза, что создает у них высо­кую концентрацию клеточного сока. Эта особенность позволяет им поглощать воду из засоленных почв. Вместе с тем протоплазма их неустойчива и легко повреждается солями. К таким растениям отно­сятся такие кустарники, как тамарикс, лох и др.

Третья группа галофитов характеризуется тем, что цитоплазма клеток корня малопропицаема для солей, поэтому они не по.ступают в растение. Высокое осмотическое давление в клетках растений этой группы создается за счет большой интенсивности фотосинтеза и на­копления растворимых углеводов.

Все приспособительные особенности галофитов, хотя и заложены в их наследственной основе, проявляются в процессе их роста на за­соленных почвах (А. А. Шахов). Из культурных растений извест­ной способностью приспособления к засолению обладают хлопчатник и частично сахарная свекла. Солеустойчивость растений можно по­высить, применив прием закаливания (П. А. Генкель). Для этого набухшие семена различных растений выдерживают в течение часа в 3%-ном растворе хлористого натрия, после чего промывают водой и высевают. Растения, выросшие из таких семян, характеризуются более низкой интенсивностью обмена, но являются более устойчивы­ми к засолению.

Морозоустойчивость растений

Морозоустойчивость- это способность переносить температуру ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже -20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых культур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани зимостойких растений могут замерзать, одна­ко растения не погибают. Большой вклад в изучение физиологических основ морозоустойчивости внесли Я. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие оте­чественные исследователи.

Замерзание растительных клеток и тканей и происходящие при этом процессы. Способность растении переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного я того же растения зависят от условии, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

Постепенное снижение температуры со скоростью 0,5-1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

Условия и причины вымерзания растений. Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится кон­центрированным, изменяется рН среды. Выкристаллизовавшийся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма под­вергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.

Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивания такие растения могут сохранить жизнеспособность. Так, в лис­тьях капусты при температуре -5…-6 °С образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, ко­торая поглощается клетками, и листья возвращаются в нормаль­ное состояние.

Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели меток растений при низких от­рицательных температурах и льдообразовании являются чрезмер­ное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно.

Летальность действия мороза определяется несколькими обстоя­тельствами. Последствия воздействия низких отрицательных тем­ператур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выно­сить глубокие низкие температуры (до -196 °С). Низкое содер­жание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой кри­тический предел обезвоживания и сжатия.

Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим по­верхностные структуры цитоплазмы, кристаллами льда, наруша­ющими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.

Действие льда, особенно при длительном влиянии низких температур, сходно с обезвоживанием клеток при засухе. При­знаками повреждения клеток морозом являются потеря ими тур­гора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К и сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транс­порта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буре­ют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без об­разования льда) растения переносят без вреда; при тех же темпе­ратурах, но с образованием льда в тканях растения гибнут.

Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до -15…-20 °С.

У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изме­нения. Морозоустойчивые растения обладают приспособлениями, уменьшающими обезвоживание клеток.

  1. При понижении температуры у таких растений отмечаются повышение содержа­ния сахаров и других веществ, защищающих ткани (криопротек­торы), это прежде всего гидрофильные белки, моно- и олигоса­хариды;

  2. снижение оводненности клеток;

  3. увеличение количества полярных липидов и снижение насыщенности их жирнокислотных остатков,

  4. увеличение количества защитных белков.

На степень морозоустойчивости растений большое влияние (оказывают сахара, регуляторы роста и другие вещества, образую­щиеся в клетках. В зимующих растениях в цитоплазме накапли­ваются сахара, а содержание крахмала снижается. Влияние саха­ров на повышение морозоустойчивости растений многосторонне (предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образую­щегося льда).

Сахара защищают белковые соединения от коагуляции при вымораживании; они образуют гидрофильные связи с белками цитоплазмы, предохраняя их от возможной денатурации, повышают осмотическое давление и снижают температуру замерзания цитозоля. В результате накопления сахаров содержание прочносвязанной воды увеличивается, а свободной уменьшается. Особое значение имеет защитное влияние сахаров на белки. сосредото­ченные в поверхностных мембранах клетки. Сахара увеличивают водоудерживающую способность коллоидов протоплазмы клеток; связанная с коллоидами вода в виде гидратных оболочек биополимеров при низких температурах не замерзает и не транспор­тируется.

Криопротекторами являются также молекулы гемицеллюлоз (ксиланы, арабиноксиланы), выделяемые цитоплазмой в клеточ­ную стенку, обволакивающие растущие кристаллы льда, что предотвращает образование крупных кристаллов, повреждающих клетку. Так клетки защищаются как от внутриклеточного льда, так и от чрезмерного обезвоживания.

Значительное количество защитных белков и модификации молекул липидов увеличивают структурированность клеток. У большинства растений возрастает синтез водорастворимых белков. Белковые вещества, частично гидролизуясь, увеличивают содержание свободных АК.

В тканях морозоустойчивых растений в конце лета и осенью накапливаются в достаточно количестве запасные вещества (прежде всего сахара), которые используются весной при возоб­новлении роста, обеспечивая потребности растении в строитель­ном материале и энергии. Необходимо также учитывать устойчи­вость растении к болезням, вероятность развития которых увели­чивается при повреждении тканей морозом.

Закаливание растений, его фазы. Морозоустойчивость — не постоянное свойство растений. Она зависит от физиологическо­го состояния растении и условии внешней среды. Растения, выращенные при относительно низких положительных темпера­турах, более устойчивы, чем выращенные при относительно вы­соких осенних температурах. Свойство морозоустойчивости фор­мируется в процессе онтогенеза растения под влиянием определенных условии среды в соответствии с генотипом растения и связано с резким снижением темпов роста, переходом растения в состояние покоя.

Жизненный цикл развития озимых, двуручек, двулетних и многолетних растении контролируется сезонным ритмом свето­вого и температурного периодов. В отличие от яровых однолет­них растении они начинают готовиться к перенесению неблаго­приятных зимних условии с момента остановки роста и затем в течение осени во время наступления пониженных температур.

Повышение морозоустойчивости растении тесно связано с закаливанием — постепенной подготовкой к воздействию низких зимних температур. Закаливание — это обратимая физиологическая устойчивость к неблагоприятным воздействия среды.

Способностью к закаливанию обладают не все растения. Рас­тения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянис­тых растений северных широт, переживающих значительное по­нижение температуры в зимний период, в период летней вегета­ции отсутствует и проявляется только во время наступления осенних пониженных температур (если растение к этому време­ни прошло необходимый цикл развития). Процесс закалки при­урочен лишь к определенным этапам развития растений. Для приобретения способности к закаливанию растения должны за­кончить процессы роста.

Разные органы растении имеют неодинаковую способность к закаливанию, например, листья листопадных деревьев (яблоня, груша, вишня) не обладают способностью к закаливанию, цве­точные почки закаливаются хуже, чем листовые. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы. Выносливость растении к низким температурам в этот период незначительная.

Эффект закаливания может не проявляться, если какая-либо причина (засуха, поздний посев, посадка и др.) произошла задержка развития растений. Так, если в течение дета у плодовых растении процессы роста из-за летней засухи не успе­ли закончиться, то зимой это может привести к гибели растений. Дело в том, что засуха, приостанавливая рост летом, не позволя­ет растениям завершить его к осени. Одновременно при закалке должен произойти отток различные веществ из надземных органов в подземные зимующие (корневые системы, корневища, лу­ковицы, клубни). По этой же причине закаливание травянистых и древесных растений ухудшает избыточное азотное питание, удли­няющее период роста до поздней осени, в результате растения не способны пройти процессы закаливания и погибнут даже при не­больших морозах.

Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в весенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внеш­ней среды.

На озимых культурах убедительно покатана необхо­димость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и накопления ингибиторов в растениях. Вероятно, с этих процессов начинается формирование морозоустойчивости у растений.

Растения, выращенные при несоответствующем фотопериоде не успевают завершить летний рост и не способны к закаливанию. Установлено, что длинный день способствует образованию в лис­тьях черной смородины фитогормонов — стимуляторов роста, а ко­роткий — накоплению ингибиторов. В естественные условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатыва­ются вещества, повышающие устойчивость растения к морозу.

Фазы закаливания. По И. И. Туманову (1979) процесс зака­ливания растений требует определенного комплекса внешние ус­ловий и проходит в две фазы, которым предшествуют замедление роста и переход растении в состояние покоя. Прекращение роста и переход в состояние покоя — необходимые условия прохожде­ния первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

При переходе в состояние покоя изменяется баланс фитогормо­нов: уменьшается содержание ауксина и гиббереллинов и увеличи­вается содержание абсцизовой кислоты, которая, ослабляя и инги­бируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлор­холинхлоридом — ССС или трийодбензойной кислотой) повышает устойчивость растении к низким температурам.

Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влажности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5-2 °С за 6-9 дней, древесные ­за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и рост. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кислот, снижается точка замерзания цитоплазмы, отмечается неко­торое уменьшение внутриклеточной воды.

Благоприятные условия для прохождения первой фазы зака­ливания озимых растений складываются при солнечной и про­хладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию сахаров в корнеплодах лучших сортов сахарной свеклы.

Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до -20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закаливания сахара локализуются в клеточном соке, цитоплазме, клеточ­ных органеллах, особенно в хлоропластах. При закаливании рас­тений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О °С, количество сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений.

В хлоропластах содержатся те же формы сахаров что и в листьях: фруктоза, глюкоза, сахароза, олигосахара (Т. И. Трунова, 1970). Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в после­дующем образования внутриклеточного льда и гибели растений.

Метаболические изменения, наблюдаемые во время первой фазы, могут быть вызваны изменением гормонального и энерге­тического балансов, что определяет синтез и активацию специ­фических ферментов, свойства веточных мембран закаленных тканей. Накапливающаяся в тканях абсцизовая кислота увеличи­вает проницаемость мембран для воды, водоотдачу теток. К. концу первой фазы закаливания все зимующие растения перехо­дят в состояние покоя. Однако процессы закалки, перестройки процессов обмена веществ продолжаются.

Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже О °С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10…-20 °С и ниже со скоростью 2-3 °С в сутки, что приво­дит к частичной потере воды ветками, освобождению клеток тканей от избыточного содержания воды иди витрификации (переходу воды в стеклообразное состояние). Явление витрифи­кации воды в растительных клетках наступает при резком охлаж­дении (ниже -20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предо­храняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания. Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цито­плазмы к низким температурам, возрастает относительное коли­чество коллоидно-связанной воды.

Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной темпе­ратуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может при­вести к гибели клеток. Следовательно, чем менее морозоустойчи­во растение, тем медленнее должна протекать вторая фаза зака­ливания.

Действующими факторами второй фазы закаливания являются обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая температура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестрой­ка белков цитоплазмы, накапливаются низкомолекулярные водо­растворимые белки, более устойчивые к обезвоживанию, синтезируются специфические белки. Содержание незамерзающей (связанной) воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой.

Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточни­ки, что снижает опасность внутриклеточного льдообразования. При обезвоживании, происходящем под влиянием льдообразова­ния, наблюдаются сближение и деформация белковых молекул. связи между которыми могут рваться и не восстанавливаются, что пагубно для клетки. Очевидно, при таких условиях происхо­дит быстрое смещение структурных частиц по отношению друг к другу, что приводит к разрушению субмикроскопической струк­туры протопласта (И. И. Туманов).

Цитоплазма закаленных растений более устойчива к механи­ческому давлению. Поэтому важно наличие у молекул белков сульфгидрильных и других гидрофильных группировок, которые способствуют удержанию воды, препятствуют слишком сильному сближению молекул белка. Между содержанием сульфгидрильных групп и морозоустойчивостью клеток растений установлена положительная связь. Благодаря изменению свойств молекул белков и межмолекулярных связей в процессе закаливания по­степенное обезвоживание приводит к переходу цитоплазмы из состояния золя в гель.

Первая фаза закаливания повышает морозоустойчивость рас­тений с -5 до -12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до -18…-20 °С, у ржи -до -20…-25 °С. Растения, находящиеся в глубоком органическом покое, отлича­ются способностью к закаливанию и выдерживают проморажи­вание до -195 °С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закалива­ния переносила охлаждение до -253 °С (И. И. Туманов. 1979).

Не у всех растений процесс закаливания проходит в две фазы.

У древесных растений, имеющих в тканях достаточное количест­во сахаров, сразу же протекают процессы, свойственные второй фазе закаливания. Однако не все растения способны к закалива­нию. Теплолюбивые растения (хлопчатник, рис, бахчевые куль­туры) при длительном пребывании при температурах немного выше О °С не только не становятся устойчивыми, но еще силь­нее повреждаются или даже погибают, так как в них накаплива­ются ядовитые вещества, усиливающие губительное действие на растения низких температур.

Обратимость процессов закаливания. Морозоустойчивость представляет собой процесс, а не постоянное свойство растений. Процесс закаливания обратим, при этом мо­розоустойчивость растений снижается. Развитие процесса зака­ливания в значительной степени зависит от условий его протека­ния. Особенно заметное влияние на морозоустойчивость оказы­вают условия закаливания растений в осенний период, определяемые в первую очередь соотношением числа ясных дней с пониженными положительными температурами ночью и числа пасмурных, дождливых дней с относительно сближенными высо­кими температурами днем и ночью. Чем это отношение выше, тем лучше условия для закалки (табл.).

Критические температуры (°С) повреждения растений озимой пшеницы при разных условиях закалки

Регион

Условия закалки

хорошие

средние

плохие

Украина, Северный Кавказ Белоруссия

-20

-16

-14

Центрально-Черноземная зона, сев. районы Нечерноземной зоны

-22

-18

-16

Поволжье, Западная Сибирь, Северный Казахстан

-25

-20

-18

У хорошо закаленных растений благодаря высокой концент­рации клеточного сока, пониженному содержанию воды образу­ется значительно меньше кристаллов льда, причем не в клетке а в межклеточниках. Такие растения погибают только при очень, сильных морозах. При закаливании происходят обратимые фи­зиологические изменения. При неустойчивой осенней и зимней погоде приобретенная в процессе закалки морозоустойчивость снижается. Наблюдается тесная связь между морозоустойчивостью растений и ростовыми процессами. Переход к состоянию покоя всегда сопровождается повышением устойчивости, а от достояния покоя к росту — снижением. В связи с этим морозоустойчивость одного и того же вида растений довольно сильно меняется в течение года: летом она минимальная (растения могут погибнуть при температурах намного выше тех, которые они выдерживают зимой), осенью увеличивается, а в конце зимы и в начале весны опять снижается. Повышение температуры весной сопровождается противоположными закаливанию физио­лого-биохимическими изменениями — происходит процесс раз­закаливания растений. Весной растения часто гибнут даже от небольших заморозков.

Способы повышения морозоустойчивости. Основа решения этой задачи -селекция морозоустойчивых сортов растений, хо­рошо адаптирующихся к климатическим условиям данного ре­гиона. Следует еще раз отметить, что процесс закаливания пред­ставляет собой временную адаптацию цитоплазмы, определяющую степень устойчивости к последующим повреждениям низкими температурами. Морозоустойчивость же формируется в соответствии с генотипом в процессе онтогенеза под влиянием определенных условий внешней среды и связана с наступлением периода покоя, его глубиной и длительностью.

Агротехника конкретного вида растений (срок и способ посе­ва и др.) должна максимально способствовать формированию в процессе закалки реализации возможной генетически детерми­нированной морозоустойчивости сорта. В северных и централь­ных районах России с неустойчивой весной и частым возвраще­нием весенних заморозков более устойчивы и урожайны сорта озимых хлебов и плодовых многолетних культур с более глубо­ким зимним покоем, с поздним сроком возобновления весенней вегетации (***). Наоборот, в районах с устойчивым нарастани­ем положительных температур весной преимущество имеют рано вегетирующие виды и сорта растений.

Морозоустойчивость сортов озимой пшеницы определяется не только количеством сахаров, накопленных с осени, но и их экономным расходованием в течение зимы. У растений зимо­стойких сортов озимой пшеницы в зимний период с понижением температуры содержание моносахаридов (глюкоза, фруктоза) увеличивается за счет расщепления сахарозы на глюкозу и фрук­тозу, что снижает точку замерзания клеточного сока. Узел куще­ния злаков, корневая шейка бобовых — своеобразная кладовая энергетических ресурсов растения в зимний период и орган по­бегообразования весной.

Морозоустойчивость растений озимой пшеницы положитель­но коррелирует с содержанием сахаров в узлах кущения. В хороших посевах озимой пшеницы в листьях в декабре содер­жание растворимых углеводов достигает 18-24 % (на сухое вещество), а в узлах кущения — 39-42 %. В опытах более морозоустойчивый сорт озимой пшеницы Мироновская 808 расходовал за зиму всего 10 % углеводов, а менее устойчивый сорт Безостая 1-23 % углеводов. Растения, закладывающие узлы кущения глубоко (3-4 см), как правило, более морозо­устойчивы, чем те, у которых узел кущения находится близко к поверхности (1-2 см). Глубина залегания узла кущения и мощность его развития зависят от качества семян, способа посева, обработки почвы.

На морозоустойчивость существенное влияние оказывают ус­ловия почвенного питания, особенно в осенний период. Устой­чивость растений к морозу возрастает на постоянно известкуе­мых почвах при внесении под посев озимых калийно-фосфорных одобрений, тогда как избыточные азотные удобрения, способст­вуя процессам роста, делают растения озимых более чувствитель­ными к морозам. На морозоустойчивость, как и на холодостой­кость растений, положительное влияние оказывают микроэле­менты (кобальт, цинк, молибден, медь, ванадий и др.)­Например, цинк повышает содержание связанной воды, усиливает накопление сахаров, молибден способствует увеличению со­держания общего и белкового азота.

Методы изучения морозоустойчивости растений. И. И. Тумановым с сотрудниками предложены лабораторные методы уско­ренного определения морозоустойчивости различных культурных растений. Испытуемые растения после закаливания подвергают воздействию критических низких температур в холодильных ка­мерах, что дает возможность выявить невымерзающие растения. Такая ускоренная оценка морозоустойчивости имеет большое преимущество перед обычным полевым способом оценки, так как последний требует много времени (иногда нескольких лет).

Другие надежные и удобные в исполнении лабораторные методы определения морозоустойчивости основаны на измерении вязкости цитоплазмы в клетках тканей исследуемых органов, определении электропроводности и др. Определение морозо­устойчивости культурных растений мирового ассортимента пока­зало, что страны СНГ обладают самыми устойчивыми их форма­ми. Наиболее устойчивые сорта озимой пшеницы выведены опытными учреждениями юго-востока и северо-востока России, где природная обстановка благоприятствует выведению морозо­устойчивых форм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *