HomeРазноеАзот и – Урок №27. Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение.

Азот и – Урок №27. Положение азота и фосфора в периодической системе химических элементов, строение их атомов. Азот, физические и химические свойства, получение и применение.

Содержание

Азот — характеристика элемента, физические и химические свойства простого вещества. Аммиак, соли аммония.

Азот (N) находится во втором периоде, пятой группе главной подгруппы. Порядковый номер – 7, Ar – 14,008.

Молекула N2 самая прочная из всех двухатомных за счет наличия тройной связи малой длины (энергия связи – 946 кДж). Связь в молекуле ковалентная неполярная.

Физические свойства: бесцветный газ, без запаха и вкуса; малорастворим в воде: в 1 л h3O растворяется 15,4 мл N2 при t° = 20 °C и p = 1 атм; t кипения =-196 °C; t плавления =-210 °C. Природный азот состоит из двух изотопов с атомными массами: 14 и 15.

Химические свойства азота:  Атом азота имеет 7 электронов, из них 5 на внешнем уровне (5 валентных электронов).  Он является одним из самых  электроотрицательных элементов (3,04 по шкале Полинга), уступая лишь хлору (3.16), кислороду (3,44) и фтору (3,98).

Характерная валентность – 3 и 4.

Наиболее характерные степени окисления: -3, -2, -1, +2, +3, +4, +5, 0. В обычных условиях азот подобен инертному газу.

В обычных условиях азот непосредственно взаимодействует лишь с литием с образованием Li3N. При нагревании (то есть активации молекул N2) или воздействии электрического разряда вступает в реакцию со многими веществами, обычно выступает как окислитель (азот по электроотрицательности на 3 месте после кислорода и фтора) и лишь при взаимодействии со фтором и кислородом – как восстановитель.

N2 + 3H2 ↔ 2NH3
N2 + 2B → 2BN
3Si + 2N2 → Si3N4
3Ca + N2 → Ca3N2
N2 + O2 → 2NO.

Получение азота. В промышленности азот получают путем сжижения воздуха с последующим испарением и отделением азота от других газовых фракций воздуха (перегонка). Полученный азот содержит примеси благородных газов (аргона).

В лабораториях обычно используется азот, доставляемый с производства в стальных баллонах под повышенным давлением или жидкий азот в сосудах Дьюара. Можно получать азот разложением некоторых его соединений:

NH4NO2 → N2 + 2H2O (при to)

(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O   (при to)

2N2O → 2N2 + O2   (при to)

Особо чистый азот получают термическим разложением азида натрия:

2NaN3 → 2Na + 3N2   (при to)

Нахождение в природе: в природе азот встречается в основном в свободном состоянии. Содержание азота в воздухе — его объемная доля  78,09 %. В небольшом количество соединения азота находится в почве; азот входит в состав аминокислот, образующих через посредство пептидных связей белки; содержится в молекулах нуклеиновых кислот – ДНК и РНК – в составе азотистых оснований (нуклеотидов): гуанина, аденила, тимидила, цитизила и уридила. Общее содержание азота в земной коре – 0,01 %. Из минералов промышленное значение имеют чилийская селитра NaNO

3 и индийская селитра KNO3.

Азот — урок. Химия, 8–9 класс.

Химический элемент

Азот — химический элемент № \(7\). Он расположен в VА группе Периодической системы химических элементов.

 

N7+7)2e)5e

 

На внешнем слое атома азота содержатся пять валентных электронов, до его завершения не хватает трёх электронов. Поэтому в соединениях с металлами и водородом азоту характерна степень окисления \(–3\), а при взаимодействии с более электроотрицательными кислородом и фтором он проявляет положительные степени окисления от \(+1\) до \(+5\).

 

Азот в виде простого вещества содержится в воздухе. Его объёмная доля составляет \(78\) %. В земной коре соединения азота встречаются редко. Известно месторождение нитрата натрия NaNO3 (чилийская селитра).

 

Азот относится к жизненно важным элементам, так как входит в состав молекул белков и нуклеиновых кислот.

Простое вещество

Молекулы простого вещества состоят из двух атомов, связанных прочной тройной связью:

 

 N:::N….,  N≡N.

 

При обычных условиях азот — бесцветный газ без запаха и вкуса, малорастворимый в воде.

Не ядовит.

 

Азот химически малоактивен из-за прочной тройной связи и в химические реакции вступает только при высоких температурах.

 

При комнатной температуре он реагирует только с литием с образованием нитрида лития:

 

6Li0+N20=2Li+13N−3.

 

При нагревании образует нитриды и с некоторыми другими металлами:

 

3Ca+N2=tCa3N2.

 

С водородом азот реагирует только при высоком давлении, повышенной температуре и в присутствии катализатора. В реакции образуется аммиак:

 

N20+3h30⇄t,p,k2N−3h4+1.

 

В реакциях с металлами и водородом азот проявляет окислительные свойства.

 

Восстановительные свойства азота проявляются в реакции с кислородом:

 

N20+O20⇄t2N+2O−2.

 

Реакция возможна только при очень высокой температуре (\(3000\) °С) и частично протекает в атмосфере во время грозы. Образуется оксид азота(\(II\)).

Применение и получение

Большое количество азота используется для получения аммиака и азотных удобрений.

Применяется он для создания инертной среды при проведении химических реакций. Жидкий азот находит применение в медицине, используется для охлаждения в химических и физических исследованиях.

 

Чистый азот получают из воздуха.

Что такое азот и для чего используется?

Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.


Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы жизни на Земле, и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.

Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении. Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания. Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле. Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

— взрывчатые вещества;

— красители и т.д.

Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.

Азот, подготовка к ЕГЭ по химии

Азот — неметаллический элемент Va группы периодической таблицы Д.И. Менделеева. Составляет 78% воздуха. Входит в состав белков, являющихся важной частью живых организмов.

Температура кипения азота составляет -195,8 °C. Однако быстрого замораживания объектов, которое часто демонстрируют в кинофильмах, не происходит. Даже для заморозки растения нужно продолжительное время, это связано с низкой теплоемкостью азота.

Азот
Общая характеристика элементов Va группы

От N к Bi (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Азот, фосфор и мышьяк являются неметаллами, сурьма — полуметалл, висмут — металл.

Элементы Va группы

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns2np3:

  • N — 2s22p3
  • P — 3s23p3
  • As — 4s24p3
  • Sb — 5s25p3
  • Bi — 6s26p3
Основное и возбужденное состояние азота

При возбуждении атома азота электроны на s-подуровне распариваются и переходят на p-подуровень. Поскольку азот находится во втором периоде, то 3ий уровень у него отсутствует, что проявляется в особенностях электронной конфигурации возбужденного состояния.

Сравнивая возможности перемещения электронов у азота и фосфора, разница становится очевидна.

Основное и возбужденное состояние атома азота
Природные соединения

В природе азот встречается в виде следующих соединений:

  • Воздух — во вдыхаемом нами воздухе содержится 78% азота
  • Азот входит в состав нуклеиновых кислот, белков
  • KNO3 — индийская селитра, калиевая селитра
  • NaNO3 — чилийская селитра, натриевая селитра
  • NH4NO3 — аммиачная селитра (искусственный продукт, в природе не встречается)

Селитры являются распространенными азотными удобрениями, которые обеспечивают быстрый рост и развитие растений, повышают урожайность. Однако, следует строго соблюдать правила их применения, чтобы не превысить допустимые концентрации.

Аммиачная селитра

Получение

В промышленности азот получают путем сжижения воздуха. В дальнейшем путем испарения их сжиженного воздуха получают азот.

Применяют и метод мембранного разделения, при котором через специальный фильтр из сжатого воздуха удаляют кислород.

Получение азота из сжатого воздуха

В лаборатории методы не столь экзотичны. Чаще всего получают азот разложением нитрита аммония

NH4NO2 → (t) N2 + H2O

Также азот можно получить путем восстановления азотной кислоты активными металлами.

HNO3(разб.) + Zn → Zn(NO3)3 + N2 + H2O

Получение азота из нитрита аммония

Химические свойства

Азот восхищает — он принимает все возможные для себя степени окисления от -3 до +5.

Степени окисления азота

Молекула азота отличается большой прочностью из-за наличия тройной связи. Вследствие этого многие реакции эндотермичны: даже горение азота в кислороде сопровождается поглощением тепла, а не выделением, как обычно бывает при горении.

Молекула азота
  • Реакция с металлами
  • Без нагревания азот взаимодействует только с литием. При нагревании реагирует и с другими металлами.

    N2 + Li → Li3N (нитрид лития)

    N2 + Mg → (t) Mg3N2

    N2 + Al → (t) AlN

  • Реакция с неметаллами
  • Важное практическое значение имеет синтез аммиака, который применяется в дальнейшим при изготовлении удобрений, красителей, лекарств.

    N2 + H2 ⇄ (t, p) NH3

Аммиак

Бесцветный газ с резким едким запахом, раздражающим слизистые оболочки. Раствор концентрацией 10% аммиака применяется в медицинских целях, называется нашатырным спиртом.

Аммиак

Получение

В промышленности аммиак получают прямым взаимодействием азота и водорода.

N2 + H2 ⇄ (t, p) NH3

В лабораторных условиях сильными щелочами действуют на соли аммония.

NH4Cl + NaOH → NH3 + NaCl + H2O

Химические свойства

Аммиак проявляет основные свойства, окрашивает лакмусовую бумажку в синий цвет.

  • Реакция с водой
  • Образует нестойкое соединение — гидроксид аммония, слабое основание. Оно сразу же распадается на воду и аммиак.

    NH3 + H2O ⇄ NH4OH

  • Основные свойства
  • Как основание аммиак способен реагировать с кислотами с образованием солей.

    NH3 + HCl → NH4Cl (хлорид аммония)

    NH3 + HNO3 → NH4NO3 (нитрат аммония)

    Нитрат аммония
  • Восстановительные свойства
  • Поскольку азот в аммиаке находится в минимальной степени окисления -3 и способен только ее повышать, то аммиак проявляет выраженные восстановительные свойства. Его используют для восстановления металлов из их оксидов.

    NH3 + FeO → N2↑ + Fe + H2O

    NH3 + CuO → N2↑ + Cu + H2O

    Горение аммиака без катализатора приводит к образованию азота в молекулярном виде. Окисление в присутствии катализатора сопровождается выделением NO.

    NH3 + O2 → (t) N2 + H2O

    NH3 + O2 → (t, кат) NO + H2O

    Горение аммиака
Соли аммония

Получение

NH3 + H2SO4 → NH4HSO4 (гидросульфат аммония, избыток кислоты)

3NH3 + H3PO4 → (NH4)3PO4

Химические свойства

Помните, что по правилам общей химии, если по итогам реакции выпадает осадок, выделяется газ или образуется вода — реакция идет.

  • Реакции с кислотами
  • NH4Cl + H2SO4 → (NH4)2SO4 + HCl↑

  • Реакции с щелочами
  • В реакциях с щелочами образуется гидроксид аммония — NH4OH. Нестойкое основание, которое легко распадается на воду и аммиак.

    NH4Cl + KOH → KCl + NH3 + H2O

  • Реакции с солями
  • (NH4)2SO4 + BaCl2 = BaSO4↓ + NH4Cl

  • Реакция гидролиза
  • В воде ион аммония подвергается гидролизу с образованием нестойкого гидроксида аммония.

    NH4+ + H2O ⇄ NH4OH + H+

    NH4OH ⇄ NH3 + H2O

  • Реакции разложения
  • NH4Cl → (t) NH3↑ + HCl↑

    (NH4)2CO3 → (t) NH3↑ + H2O + CO2

    NH4NO2 → (t) N2↑ + H2O

    NH4NO3 → (t) N2O↑ + H2O

    (NH4)3PO4 → (t) NH3↑ + H3PO4

    Фосфат аммония
Оксид азота I — N2O

Закись азота, веселящий газ — N2O — обладает опьяняющим эффектом. Несолеобразующий оксид. При н.у. является бесцветным газом с приятным сладковатым запахом и привкусом. В медицине применяется в больших концентрациях для ингаляционного наркоза.

Закись азота

Получают N2O разложением нитрата аммония при нагревании:

NH4NO3 → N2O + H2O

Оксид азота I разлагается на азот и кислород:

N2O → (t) N2 + O2

Оксид азота II — NO

Окись азота — NO. Несолеобразующий оксид. При н.у. бесцветный газ, на воздухе быстро окисляется до оксида азота IV.

Получение

В промышленных масштабах оксид азота II получают при каталитическом окислении аммиака.

NH3 + O2 → (t, кат) NO + H2O

В лабораторных условиях — в ходе реакции малоактивных металлов с разбавленной азотной кислотой.

Cu + HNO3(разб.) → Cu(NO3)2 + NO + H2O

Химические свойства

На воздухе быстро окисляется с образованием бурого газа — оксида азота IV — NO2.

NO + O2 → NO2

Оксид азота IV бурый газ
Оксид азота III — N2O3

При н.у. жидкость синего цвета, в газообразной форме бесцветен. Высокотоксичный, приводит к тяжелым ожогам кожи.

Оксид азота III

Получение

Получают N2O3 в две стадии: сначала реакцией оксида мышьяка III с азотной кислотой, затем охлаждением полученной смеси газов до температуры — 36 °C.

As2O3 + HNO3 → H3AsO 3 + NO↑ + NO2

При охлаждении газов образуется оксид азота III.

NO + NO2 → N2O3

Химические свойства

Является кислотным оксидом. соответствует азотистой кислота — HNO2, соли которой называются нитриты (NO2). Реагирует с водой, основаниями.

H2O + N2O3 → HNO2

NaOH + N2O3 → NaNO2 + H2O

Оксид азота IV — NO2

Бурый газ, имеет острый запах. Ядовит.

Оксид азота IV

Получение

В лабораторных условиях данный оксид получают в ходе реакции меди с концентрированной азотной кислотой. Также NO2 выделяется при разложении нитратов.

Cu + HNO3(конц) → Cu(NO3)2 + NO2 + H2O

Разложение нитратов

Cu(NO3)2 → (t) CuO + NO2 + O2

Pb(NO3)2 → (t) PbO + NO2 + O2

Химические свойства

Проявляет высокую химическую активность, кислотный оксид.

  • Окислительные свойства
  • Как окислитель NO2 ведет себя в реакциях с фосфором, углеродом и серой, которые сгорают в нем.

    NO2 + C → CO2 + N2

    NO2 + P → P2O5 + N2

    Окисляет SO2 в SO3 — на этой реакции основана одна из стадий получения серной кислоты.

    SO2 + NO2 → SO3 + NO

  • Реакции с водой и щелочами
  • Оксид азота IV соответствует сразу двум кислотам — азотистой HNO2 и азотной HNO3. Реакции с водой и щелочами протекают по одной схеме.

    NO2 + H2O → HNO3 + HNO2

    NO2 + LiOH → LiNO3 + LiNO2 + H2O

    Если растворение в воде оксида проводить в избытке кислорода, образуется азотная кислота.

    NO2 + H2O + O2 → HNO3

Оксид азота IV

©Беллевич Юрий Сергеевич

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

АЗОТ | Энциклопедия Кругосвет

Содержание статьи

АЗОТ, N (nitrogenium), химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом), и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого, известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO3), нитриты (NO2), цианиды (CN), нитриды (N3–) и азиды (N3).

Историческая справка.

Опыты А.Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает «безжизненный». В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его «вредный воздух». Латинское название азота происходит от греческих слов nitron и gen, что означает «образующий селитру».

Фиксация азота и азотный цикл.

Термин «фиксация азота» означает процесс связывания атмосферного азота N2. В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Строение ядра и электронных оболочек.

В природе существуют два стабильных изотопа азота: с массовым числом 14 (КРУГОВОРОТ АЗОТА В ПРИРОДЕ содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (КРУГОВОРОТ АЗОТА В ПРИРОДЕ содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12N, 13N, 16N, 17N получены искусственно. Схематически электронное строение атома азота КРУГОВОРОТ АЗОТА В ПРИРОДЕ таково: 1s22s22px12py12pz1. Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (–III) до (V), и они известны. См. также АТОМА СТРОЕНИЕ.

Молекулярный азот.

Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид NєN (или N2). У двух атомов азота три внешних 2p-электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N–N равно 1,095 Å. Как и в случае с водородом (см. ВОДОРОД), существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39° С. Модификация b плавится при –209,96° С и кипит при –195,78° C при 1 атм (см. табл. 1).

Энергия диссоциации моля (28,016 г или 6,023Ч1023 молекул) молекулярного азота на атомы (N2КРУГОВОРОТ АЗОТА В ПРИРОДЕ 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.

Получение и применение.

Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.

Азот из атмосферы.

Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO2, пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.

Лабораторные способы.

Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Очень удобен процесс окисления иона аммония нитрит-ионом:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Известны и другие способы – разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Физические свойства.

Некоторые физические свойства азота приведены в табл. 1.

Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Плотность, г/см3 0,808 (жидк.)
Температура плавления, °С –209,96
Температура кипения, °С –195,8
Критическая температура, °С –147,1
Критическое давление, атма 33,5
Критическая плотность, г/см3а 0,311
Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С)
Электроотрицательность по Полингу 3
Ковалентный радиус, 0,74
Кристаллический радиус, 1,4 (M3–)
Потенциал ионизации, Вб  
первый 14,54
второй 29,60
а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.

Химические свойства.

Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s-уровне и три наполовину заполненные 2р-орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl5 – стабильное соединение, а NCl5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N2H4 и азиды металлов MN3. Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды MxNy. В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ
Степень окисления Примеры соединений
–III Аммиак NH3, ион аммония NH4+, нитриды M3N2
–II Гидразин N2H4
–I Гидроксиламин NH2OH
I Гипонитрит натрия Na2N2O2, оксид азота(I) N2O
II Оксид азота(II) NO
III Оксид азота(III) N2O3, нитрит натрия NaNO2
IV Оксид азота(IV) NO2, димер N2O4
V Оксид азота(V) N2O5, азотная кислота HNO3 и ее соли (нитраты)

Нитриды.

Соединения азота с более электроположительными элементами, металлами и неметаллами – нитриды – похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M–N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.

Ионные нитриды.

Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N3–. К таким нитридам относятся Li3N, Mg3N2, Zn3N2 и Cu3N2. Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH3 и гидроксиды металлов.

Ковалентные нитриды.

Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF3 и NCl3). К ковалентным нитридам относятся, например, Si3N4, P3N5 и BN – высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.

Нитриды с промежуточным типом связи.

Переходные элементы в реакции с NH3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов – Fe4N, W2N, Mo2N, Mn3N2. Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.

Водородные соединения азота.

Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ). Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода – аммиак NH3 и гидразин N2H4. К ним относится также азотистоводородная кислота HNNN (HN3).

Аммиак Nh4.

Аммиак – один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).

Строение молекулы.

Молекула NH3 имеет почти пирамидальное строение. Угол связи H–N–H составляет 107°, что близко к величине тетраэдрического угла 109°. Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Cвойства аммиака.

Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ
Свойство Аммиак Вода
Плотность, г/см3 0,65 (–10° С) 1,00 (4,0° С)
Температура плавления, °С –77,7 0
Температура кипения, °С –33,35 100
Критическая температура, °С 132 374
Критическое давление, атм 112 218
Энтальпия испарения, Дж/г 1368 (–33° С) 2264 (100° С)
Энтальпия плавления, Дж/г 351 (–77° С) 334 (0° С)
Удельная электропроводность 5Ч10–11 (–33° С) 4Ч10–8 (18° С)

Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).

Аммиак как растворитель.

Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Синий цвет связывают с сольватацией и движением электронов или с подвижностью «дырок» в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

аналогично процессу, протекающему в воде:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Некоторые химические свойства обеих систем сопоставлены в табл. 4.

Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl2 и K, поскольку CaCl2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой.

Получение аммиака.

Газообразный NH3 выделяется из солей аммония при действии сильного основания, например, NaOH:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg3N2, водой. Цианамид кальция CaCN2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Химические свойства аммиака.

Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH3ЧH2O, которое часто ошибочно считают гидроксидом аммония NH4OH; в действительности существование NH4OH в растворе не доказано. Водный раствор аммиака («нашатырный спирт») состоит преимущественно из NH3, H2O и и малых концентраций ионов NH4+ и OH, образующихся при диссоциации

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH3. Поэтому NH3 – это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH3 с образованием координационного соединения. Например:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Символ Mn+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu2+, Mn2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH4NO3, хлорид аммония NH4Cl, сульфат аммония (NH4)2SO4, фосфат аммония (NH4)3PO4. Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH2CONH2, получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Аммиак реагирует с гидридами и нитридами также с образованием амидов:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Амиды щелочных металлов (например, NaNH2) реагируют с N2O при нагревании, образуя азиды:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Газообразный NH3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N2 и H2:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Атомы водорода в молекуле NH3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH3, образуя смесь веществ, содержащую NI3. Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH3 c Cl2 образуются хлорамины NCl3, NHCl2 и NH2Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl2) конечным продуктом является гидразин:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Гидразин.

Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N2H4ЧH2O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H2O2. Чистый безводный гидразин – бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

В кислой среде (H+) гидразин образует растворимые соли гидразония типа [NH2NH2H]+X. Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты.

Оксиды азота.

В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N2O, NO, N2O3, NO2 (N2O4), N2O5. Имеется скудная информация об образовании пероксидов азота (NO3, NO4).

Оксид азота(I)

N2O (монооксид диазота) получается при термической диссоциации нитрата аммония:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Молекула имеет линейное строение

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

N2O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N2O, известный как «веселящий газ», используют для умеренной анестезии в медицине.

Оксид азота(II)

NO – бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

NO можно получать синтезом из простых веществ (N2 и O2) при очень высоких температурах, например в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO КРУГОВОРОТ АЗОТА В ПРИРОДЕ N2O2.

Оксид азота(III)

N2O3 (триоксид азота) – ангидрид азотистой кислоты: N2O3 + H2O КРУГОВОРОТ АЗОТА В ПРИРОДЕ 2HNO2. Чистый N2O3 может быть получен в виде голубой жидкости при низких температурах (–20° С) из эквимолекулярной смеси NO и NO2. N2O3 устойчив только в твердом состоянии при низких температурах (т.пл. –102,3° С), в жидком и газообразном состояния он снова разлагается на NO и NO2.

Оксид азота(IV)

NO2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам):

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

NO2 получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

а также по реакциям:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

При комнатной температуре NO2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO2 димеризуется в тетраоксид диазота, причем при –9,3° C димеризация протекает полностью: 2NO2КРУГОВОРОТ АЗОТА В ПРИРОДЕ N2O4. В жидком состоянии недимеризовано только 1% NO2, а при 100° C остается в виде димера 10% N2O4.

NO2 (или N2O4) реагирует в теплой воде с образованием азотной кислоты: 3NO2 + H2O = 2HNO3 + NO. Технология NO2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты.

Оксид азота(V)

N2O5 (устар. ангидрид азотной кислоты) – белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P4O10:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

N2O5 легко растворяется во влаге воздуха, вновь образуя HNO3. Свойства N2O5 определяются равновесием

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

N2O5 – хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру N2O5 можно представить как

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Оксокислоты азота.

Для азота известны три оксокислоты: гипоазотистая H2N2O2, азотистая HNO2 и азотная HNO3.

Гипоазотистая кислота

H2N2O2 – очень нестабильное соединение, образуется в неводной среде из соли тяжелого металла – гипонитрита при действии другой кислоты: M2N2O2 + 2HX КРУГОВОРОТ АЗОТА В ПРИРОДЕ 2MX + H2N2O2. При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H–O–N=N–O–H.

Азотистая кислота

HNO2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

КРУГОВОРОТ АЗОТА В ПРИРОДЕ

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO2 (или N2O3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H–O–N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты.

Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты – нитриты – хорошо растворяются в воде, кроме нитрита серебра. NaNO2 применяется в производстве красителей.

Азотная кислота

HNO3 – один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др. См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.

это что за вещество? Типы и свойства азота

Азот — это всем известный химический элемент, который обозначается буквой N. Этот элемент, пожалуй, основа неорганической химии, его начинают подробно изучать еще в 8 классе. В данной статье мы рассмотрим данный химический элемент, а также его свойства и типы.

Азот - это одно из самых распространенных на Земле вещество

История открытия химического элемента

Азот — это элемент, который впервые был представлен знаменитым французским химиком Антуаном Лавуазье. Но за звание первооткрывателя азота борются многие ученые, среди них и Генри Кавендиш, Карл Шееле, Даниэль Резерфорд.

Генри Кавендиш в результате опыта первым выделил химический элемент, но так и не понял, что он получил простое вещество. О своем опыте он сообщил Джозефу Пристли, который тоже проделывал ряд исследований. Вероятно, Пристли тоже удалось выделить этот элемент, но ученый не смог понять, что именно он получил, поэтому не заслужил звание первооткрывателя. Карл Шееле одновременно с ними проводил те же исследования, но не пришел к нужному выводу.

В том же году Даниэль Резерфорд сумел не только получить азот, но и описать его, опубликовать диссертацию и указать основные химические свойства элемента. Но даже Резерфорд так до конца и не понял, что он получил. Однако именно его считают первооткрывателем, потому что он был ближе всех к разгадке.

Азот - это газ, без которого жизнь на нашей планете невозможна

Происхождение названия азота

С греческого «азот» переводится как «безжизненный». Именно Лавуазье трудился над правилами номенклатуры и решил так назвать элемент. В 18 веке про этот элемент было известно лишь то, что он не поддерживает ни реакций горения, ни дыхания. Поэтому данное название приняли.

В латинском языке азот называется «нитрогениум», что в перевод означает «рождающий селитру». Из латинского языка и появилось обозначение азота — буква N. Но само название во многих странах не прижилось.

Распространенность элемента

Азот — это, пожалуй, один из самых распространенных элементов на нашей планете, он занимает четвертое место по распространенности. Элемент также найден в солнечной атмосфере, на планетах Уран и Нептун. Из азота состоят атмосферы Титана, Плутона и Тритона. Помимо этого, атмосфера Земли состоит на 78-79 процентов из этого химического элемента.

Азот играет важную биологическую роль, ведь он необходим для существования растений и животных. Даже тело человека содержит от 2 до 3 процентов этого химического элемента. Входит в состав хлорофилла, аминокислот, белков, нуклеиновых кислот.

Азот - это смесь

Жидкий азот

Жидкий азот — это бесцветная прозрачная жидкость, является одним из агрегатных состояний химического вещества. Жидкий азот широко используется в промышленности, строительстве и медицине. Он используется при заморозке органических материалов, охлаждения техники, а в медицине для удаления бородавок (эстетическая медицина).

Жидкий азот не токсичен, а также не взрывоопасен.

Молекулярный азот

Молекулярный азот — это элемент, который содержится в атмосфере нашей планеты и образует большую ее часть. Формула молекулярного азота — N2. Такой азот вступает в реакции с другими химическими элементами или веществами только при очень высокой температуре.

Физические свойства

При нормальных условиях химический элемент азот — это газ, который не имеет запаха, цвета, а также практически не растворим в воде. Азот жидкий по своей консистенции напоминает воду, такой же прозрачный и бесцветный. У азота есть еще одно агрегатное состояние, при температуре ниже -210 градусов он превращается в твердое тело, образует много больших белоснежных кристаллов. Поглощает кислород из воздуха.

Химические свойства

Азот относится к группе неметаллов и перенимает свойства у других химических элементов из этой группы. Как правило, неметаллы не являются хорошими проводниками электричества. Азот образует различные оксиды, например NO (моноокисид). NO или окись азота является мышечным релаксантом (вещество, которое значительно расслабляет мускулатуру и при этом не оказывает никакого вреда и иных влияний на организм человека). Оксиды, где содержится больше атомов азота, например N2O — это веселящий газ, чуть-чуть сладковатый на вкус, который используется в медицине как анестезирующее средство. Однако уже оксид NO2 не имеет никакого отношения к первым двум, ведь это довольно вредный выхлопной газ, который содержится в выхлопах автомобилей и серьезно загрязняет атмосферу.

Азотная кислота, которую образуют атомы водорода, азота и три атома кислорода, является сильной кислотой. Ее широко используют в производстве удобрений, в ювелирном деле, органическом синтезе, военной промышленности (производство взрывчатых веществ, ракетного топлива и синтеза отравляющих веществ), производстве красителей, лекарств и др. Азотная кислота очень вредна для организма человека, на коже оставляет язвы и химические ожоги.

Люди ошибочно полагают, что углекислый газ — это азот. На самом деле, по своим химическим свойствам элемент реагирует лишь с небольшим количеством элементов при нормальных условиях. А углекислый газ — это оксид углерода.

Углекислый газ - это азот

Применение химического элемента

Азот в жидком состоянии применяют в медицине для лечения холодом (криотерапии), а также в кулинарии как хладагент.

Этот элемент также нашел широкое применение в промышленности. Азот — это газ, который взрыво- и пожаробезопасен. Помимо этого, он препятствует гниению и окислению. Сейчас азот используют в шахтах с целью создания взрывобезопасной среды. Газообразный азот применяют в нефтехимии.

В химической промышленности без азота обойтись очень нелегко. Его используют для синтеза различных веществ и соединений, например некоторых удобрений, аммиака, взрывчатых веществ, красителей. Сейчас большое количество азота используют для синтеза аммиака.

В пищевой промышленности это вещество зарегистрировано как пищевая добавка.

Жидкий азот - это

Смесь или чистое вещество?

Даже ученые первой половины 18 века, которым удалось выделить химический элемент, думали, что азот — это смесь. Но существует большая разница между этими понятиями.

Чистое вещество имеет целый комплекс постоянных свойств, таких как состав, физические и химические свойства. А смесь — это соединение, в которое входит два или больше химических элемента.

Сейчас мы знаем, что азот — это чистое вещество, так как он является химическим элементом.

Молекулярный азот - это незаменимое в промышленности вещество

При изучении химии очень важно понять, что азот является основой всей химии. Он образует различные соединения, которые всем нам встречаются, это и веселящий газ, и бурый газ, и аммиак, и азотная кислота. Недаром химия в школе начинается именно с изучения такого химического элемента, как азот.

азот — это… Что такое азот?

АЗО́Т -а; м. [франц. azote от греч. an- — не-, без- и zōtikos — дающий жизнь]. Химический элемент (N), газ без цвета и запаха, не поддерживающий дыхания и горения (составляет основную по объёму и массе часть воздуха, является одним из главных элементов питания растений).

Азо́тный, -ая, -ое. А-ая кислота. А-ые удобрения. Азо́тистый, -ая, -ое. А-ая кислота.

АЗО́Т (лат. Nitrogenium — рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде — газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам.
Природный азот состоит из стабильных нуклидов (см. НУКЛИД) 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2s23. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3- — 0,132 , N3+ — 0,030 и N5+ — 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.
История открытия
Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения («удушливый воздух») и в отличие от CO2 не поглощаемый раствором щелочи. Вскоре французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. azoos — безжизненный). В 1784 английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).
Нахождение в природе
В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде — в состав двух селитр: натриевой NaNO3 (встречается в Чили, отсюда название чилийская селитра (см. ЧИЛИЙСКАЯ СЕЛИТРА)) и калиевой KNO3 (встречается в Индии, отсюда название индийская селитра) — и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1—3% на сухую массу), являясь важнейшим биогенным элементом (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ). Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами (см. Азотфиксация (см. АЗОТФИКСАЦИЯ)). Превращения соединений азота в живых клетках — важнейшая часть обмена веществ у всех организмов.
Получение
В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8 °C), чем другого компонента воздуха — кислорода (-182,9 °C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара (см. ДЬЮАРА СОСУД).
В лаборатории чистый («химический») азот получают, добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2:
NaNO2 + NH4Cl = NaCl + N2 + 2H2O.
Можно также нагревать твердый нитрит аммония:
NH4NO2 = N2 + 2H2O.
Физические и химические свойства
Плотность газообразного азота при 0 °C 1,25046 г/дм3, жидкого азота (при температуре кипения) — 0,808 кг/дм3. Газообразный азот при нормальном давлении при температуре –195,8 °C переходит в бесцветную жидкость, а при температуре –210,0 °C — в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже –237,54 °C устойчива форма с кубической решеткой, выше — с гексагональной.
Критическая температура азота –146,95 °C, критическое давление 3,9МПа, тройная точка лежит при температуре –210,0 °C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.
Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре –210 °C).
Энергия связи атомов в молекуле N2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N2 показывает, что электронами в ней заполнены только связывающие s- и p-орбитали. Молекула азота немагнитна (диамагнитна).
Из-за высокой прочности молекулы N2процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена (см. ГЕКСОГЕН)) при нагревании, ударах и т. д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.
Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием (см. ЛИТИЙ) с образованием твердого нитрида лития Li3N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует аммиак (см. АММИАК) NH3. Косвенным путем (не из простых веществ) получают гидразин (см. ГИДРАЗИН) N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты — азиды (см. АЗИДЫ). Азид свинца Pb(N3)2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.
Известно несколько оксидов азота (см. АЗОТА ОКСИДЫ). С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).
Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые — при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI3 взрывается:
2NI3 = N2 + 3I2.
Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.
При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2, которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:
Са3N2 + 6H2O = 3Ca(OH)2 + 2NH3.
Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N. При нагревании азота с ацетиленом C2H2 может быть получен цианистый водород HCN.
Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота (см. АЗОТНАЯ КИСЛОТА) HNO3, ее соли нитраты (см. НИТРАТЫ), а также азотистая кислота HNO2 и ее соли нитриты (см. НИТРИТЫ).
Применение
В промышленности газ азот используют главным образом для получения аммиака (см. АММИАК). Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент (см. ХЛАДАГЕНТ), его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения (см. МИНЕРАЛЬНЫЕ УДОБРЕНИЯ).
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *